HOMEWORK 3

RAYMOND BAKER

Theorem 1. Let (\mathbb{R}, \leq) be the set of reals with the usual ordering. We will say that a subset B of \mathbb{R} is well-ordered if the restriction of $<$ to B is a well-order on B. Let us fix an n-ary function $f: \mathbb{R}^{n} \rightarrow$ $\mathbb{R}(n \in \omega \backslash\{0\})$ which is (weak) order preserving; i.e., satisfies $f\left(x_{0}, \ldots, x_{n-1}\right) \leq f\left(y_{0}, \ldots, y_{n-1}\right)$ whenever $x_{0}, \ldots, x_{n-1}, y_{0}, \ldots, y_{n-1} \in \mathbb{R}$ are such that $x_{0} \leq y_{0}, \ldots, x_{n-1} \leq y_{n-1}$.

Prove that if A_{0}, \ldots, A_{n-1} are well-ordered subsets of \mathbb{R}, then the subset

$$
f\left[A_{0}, \ldots, A_{n-1}\right]=\left\{f\left(a_{0}, \ldots, a_{n-1}\right): a_{0} \in A_{0}, \ldots, a_{n-1} \in A_{n-1}\right\}
$$

of \mathbb{R} is also well-ordered.

In order to prove theorem 1, we will first prove a helping lemma.

Lemma 1.1. Given a linear order < on a set A, A is well ordered under < if, and only if, A contains no <-strictly decreasing ω sequences.

Proof. To prove the forwards direction, assume that $(A,<)$ is a well order and, for contradiction, that there exists a decreasing ω-sequence $\left(a_{n}\right)_{n \in \omega}$ contained in A. Now take the set $B=\{a \in A$: $\left.\exists n \in \omega\left(a=a_{n}\right)\right\}$. Since the range of a non-empty function cannot be empty, B is non-empty. Thus, by assumption, there exists a <-minimal element m of B. By construction $m=a_{n}$ for some $n \in \omega$. But, we have that $a_{n+1} \in B$ as well and, by assumption $a_{n+1}<a_{n}=m$, a contradiction. Thus, A contains no <-decreasing ω-sequence.

Now, to prove the converse we will prove its contrapositive, i.e. that if A is not well ordered under <, then A contains some <-decreasing ω-sequence. So, assume A is not well ordered. Since < is linear on A, there must exist some non-empty $B \subseteq A$ where B contains no minimal element. Since B is non-empty, we may take some $b \in B$. Before defining the sequence, we invoke the choice function principle. Let C be a choice function on $\mathscr{P}(B)-\{\varnothing\}$. Now define $G: \omega \times V \rightarrow V$ by

$$
G(n, v)= \begin{cases}b & \text { if } n=0 \\ C(\{x \in B: x<v(m)\}) & \text { if } n=m+1, v \text { is a function } \mathrm{w} / \mathrm{dmn}=n \text { and } v(m) \in B \\ \varnothing & \text { otherwise }\end{cases}
$$

We know that $\{x \in B: x<v(m)\}$ is always non-empty under the given conditions since B contains no minimal elements. The General Recursion Theorem implies there exists $F: \omega \rightarrow V$ such that $F(n)=G\left(n, F \upharpoonright_{n}\right)$, for all $n \in \omega$. Clearly F is an ω-sequence. We will show the sequence $(F(n))_{n \in \omega}$ is contained in A and strictly decreasing. Consider $S=\{n \in \omega: F(n) \in B\}$. Clearly $F(0)=b \in B$ so
$0 \in S$. Assume $n \in S$ and consider $F(n+1)=G\left(n+1, F \upharpoonright_{n+1}\right)$. By the inductive hypothesis $F(n) \in B$, so $G\left(n+1, F \upharpoonright_{n+1}\right)=C(\{x \in B: x<F(n)\})$. Clearly $C(\{x \in B: x<F(n)\})=F(n+1) \in B$ and so $n+1 \in S$. Thus, by induction, $S=\omega$ and the sequence $(F(n))_{n \in \omega}$ is contained in B, implying it is contained in A. To see that this sequence is strictly decreasing, we will use induction on n to show that $F(n)<F(m)$ for all $m<n$. Consider the set $S=\{n \in \omega: \forall m<n(F(n)<F(m))\}$. Vacuously, $0 \in S$. Now assume $n \in S$. Take any $m<n+1$. Then $m<n$ or $m=n$. Take the latter, we have that $F(n+1)=C(\{x \in B: x<F(n)\})$, since we have shown every $F(n) \in B$. But from this it is clear that $F(n+1) \in\{x \in B: x<F(n)\}$ and $F(n+1)<F(n)=F(m)$. Now take the former case, where $m<n$. By the inductive hypothesis, $F(n)<F(m)$. But this implies $F(n+1)<F(m)$, since we have just seen that $F(n+1)<F(n)$. Thus, in either case, $F(n+1)<F(m)$ so $n+1 \in S$. By induction $S=\omega$. Thus, F defines a strictly <-decreasing ω-sequence contained in A.

Proof of Theorem 1.

Proof. To see that $f\left[A_{0}, \ldots, A_{n-1}\right]$ is well ordered, assume it is not. We have that $<$ is a linear order when restricted to $f\left[A_{0}, \ldots, A_{n-1}\right]$. So there exists a strictly decreasing ω-sequence $\left(f\left(a_{0, i}, \ldots, a_{n-1, i}\right)\right)_{i \epsilon \omega}$ of elements of $f\left[A_{0}, \ldots, A_{n-1}\right]$, i.e. the sequence satisfies $f\left(a_{0, j}, \ldots, a_{n-1, j}\right)<$ $f\left(a_{0, i}, \ldots, a_{n-1, i}\right)$ when $i<j$. Now we look to define an n-coloring on 2 -subsets of the domain of this sequence, i.e. ω. Before doing so, note we have that, for every $i, j \in \omega$ with $i<j$, $f\left(a_{0, j}, \ldots, a_{n-1, j}\right)<f\left(a_{0, i}, \ldots, a_{n-1, i}\right)$, which implies that $f\left(a_{0, i}, \ldots, a_{n-1, i}\right) \notin f\left(a_{0, j}, \ldots, a_{n-1, j}\right)$. Since f is weak order preserving, we have that $a_{0, i} \npreceq a_{0, j}$, or $a_{1, i} \npreceq a_{1, j}, \ldots$, or $a_{n-1, i} \not \ddagger a_{n-1, j}$. So, for all $i<j$ with $i, j \in \omega$, there exists some $p \in n$ such that $a_{p, i} \nless a_{p, j}$, i.e. $a_{p, j}<a_{p, i}$.

Now, take any $\{i, j\} \in[\omega]^{2}$. We may assume, w.l.o.g., that $i<j$. Then, let $\{i, j\} \mapsto p$ where p is the least element of n such that $a_{p, j}<a_{p, i}$. This map is well defined since such a p is, as seen above, guaranteed to exist and the "least" clause guarantees uniqueness and is ensured by n 's being well ordered. Thus, this defines a coloring function $g:[\omega]^{2} \rightarrow n$. But, by Ramsey's theorem, $\omega \rightarrow(\omega)_{n}^{2}$. Thus, there is some $p \in n$ and $\Gamma \subseteq \omega$ with $|\Gamma|=\omega$ such that, for each $\{i, j\} \in[\Gamma]^{2}$, we have $g(\{i, j\})=p$.

Now we look to show this implies that A_{p} contains a strictly decreasing ω-sequence. To do this, consider the set $\left\{a_{p, i} \in A_{p}: i \in \Gamma\right\}$. Since < restricted to Γ is a well order and $|\Gamma|=\omega,(\Gamma,<)$ is isomorphic to $(\omega,<)$. Let $\phi: \omega \rightarrow \Gamma$ be the unique isomorphism. This allow us to define a sequence $\left(a_{p, \phi(i)}\right)_{i \epsilon \omega}$. Now we must verify that $\left(a_{p, \phi(i)}\right)_{i \epsilon \omega}$ is strictly decreasing. Take any $i, j \in \omega$ such that $i<j$. Then $\phi(i)<\phi(j)$. Since $\phi(i), \phi(j) \in \Gamma$, it follows that $g(\{\phi(i), \phi(j)\})=p$. Further, as $\phi(i)<\phi(j)$, we have $a_{p, \phi(j)}<a_{p, \phi(i)}$, by the definition of g. Thus the ω-sequence $\left(a_{p, \phi(i)}\right)_{i \in \omega}$ is strictly decreasing and contained in A_{p}. Thus, A_{p} is not well ordered, a contradiction.

So, we may conclude that $f\left[A_{0}, \ldots, A_{n-1}\right]$ is well ordered, demonstrating that, if A_{0}, \ldots, A_{n-1} are well-ordered subsets of \mathbb{R}, then the subset

$$
f\left[A_{0}, \ldots, A_{n-1}\right]=\left\{f\left(a_{0}, \ldots, a_{n-1}\right): a_{0} \in A_{0}, \ldots, a_{n-1} \in A_{n-1}\right\}
$$

of \mathbb{R} is also well-ordered.

