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HOMEWORK 3

RAYMOND BAKER

Theorem 1. Let (R,≤) be the set of reals with the usual ordering. We will say that a subset B of R
is well-ordered if the restriction of < to B is a well-order on B. Let us fix an n-ary function f ∶Rn →

R (n ∈ ω ∖ {0}) which is (weak) order preserving; i.e., satisfies f(x0, . . . , xn−1) ≤ f(y0, . . . , yn−1)
whenever x0, . . . , xn−1, y0, . . . , yn−1 ∈ R are such that x0 ≤ y0, . . . , xn−1 ≤ yn−1.

Prove that if A0, . . . ,An−1 are well-ordered subsets of R, then the subset

f[A0, . . . ,An−1] = {f(a0, . . . , an−1) ∶ a0 ∈ A0, . . . , an−1 ∈ An−1}

of R is also well-ordered.

In order to prove theorem 1, we will first prove a helping lemma.

Lemma 1.1. Given a linear order ≺ on a set A, A is well ordered under ≺ if, and only if, A contains

no ≺-strictly decreasing ω sequences.

Proof. To prove the forwards direction, assume that (A,≺) is a well order and, for contradiction,

that there exists a decreasing ω-sequence (an)n∈ω contained in A. Now take the set B = {a ∈ A ∶

∃n ∈ ω(a = an)}. Since the range of a non-empty function cannot be empty, B is non-empty. Thus,

by assumption, there exists a ≺-minimal element m of B. By construction m = an for some n ∈ ω.

But, we have that an+1 ∈ B as well and, by assumption an+1 ≺ an = m, a contradiction. Thus, A

contains no ≺-decreasing ω-sequence.

Now, to prove the converse we will prove its contrapositive, i.e. that if A is not well ordered under ≺,

then A contains some ≺-decreasing ω-sequence. So, assume A is not well ordered. Since ≺ is linear

on A, there must exist some non-empty B ⊆ A where B contains no minimal element. Since B is

non-empty, we may take some b ∈ B. Before defining the sequence, we invoke the choice function

principle. Let C be a choice function on P(B) − {∅}. Now define G ∶ ω × V → V by

G(n, v) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

b if n = 0

C({x ∈ B ∶ x ≺ v(m)}) if n =m + 1, v is a function w/dmn = n and v(m) ∈ B

∅ otherwise

We know that {x ∈ B ∶ x ≺ v(m)} is always non-empty under the given conditions since B contains

no minimal elements. The General Recursion Theorem implies there exists F ∶ ω → V such that

F (n) = G(n,F ↾n), for all n ∈ ω. Clearly F is an ω-sequence. We will show the sequence (F (n))n∈ω
is contained in A and strictly decreasing. Consider S = {n ∈ ω ∶ F (n) ∈ B}. Clearly F (0) = b ∈ B so

1



Mathematics 109621442

0 ∈ S. Assume n ∈ S and consider F (n+1) = G(n+1, F ↾n+1). By the inductive hypothesis F (n) ∈ B,

so G(n + 1, F ↾n+1) = C({x ∈ B ∶ x ≺ F (n)}). Clearly C({x ∈ B ∶ x ≺ F (n)}) = F (n + 1) ∈ B and so

n + 1 ∈ S. Thus, by induction, S = ω and the sequence (F (n))n∈ω is contained in B, implying it is

contained in A. To see that this sequence is strictly decreasing, we will use induction on n to show

that F (n) ≺ F (m) for all m < n. Consider the set S = {n ∈ ω ∶ ∀m < n(F (n) ≺ F (m))}. Vacuously,

0 ∈ S. Now assume n ∈ S. Take any m < n + 1. Then m < n or m = n. Take the latter, we have

that F (n + 1) = C({x ∈ B ∶ x ≺ F (n)}), since we have shown every F (n) ∈ B. But from this it is

clear that F (n + 1) ∈ {x ∈ B ∶ x < F (n)} and F (n + 1) ≺ F (n) = F (m). Now take the former case,

where m < n. By the inductive hypothesis, F (n) ≺ F (m). But this implies F (n + 1) ≺ F (m), since

we have just seen that F (n + 1) ≺ F (n). Thus, in either case, F (n + 1) < F (m) so n + 1 ∈ S. By

induction S = ω. Thus, F defines a strictly ≺-decreasing ω-sequence contained in A.

�

Proof of Theorem 1.

Proof. To see that f[A0, . . . ,An−1] is well ordered, assume it is not. We have that < is a lin-

ear order when restricted to f[A0, . . . ,An−1]. So there exists a strictly decreasing ω-sequence

(f(a0,i, ..., an−1,i))i∈ω of elements of f[A0, . . . ,An−1], i.e. the sequence satisfies f(a0,j, ..., an−1,j) <

f(a0,i, ..., an−1,i) when i < j. Now we look to define an n-coloring on 2-subsets of the domain

of this sequence, i.e. ω. Before doing so, note we have that, for every i, j ∈ ω with i < j,

f(a0,j, ..., an−1,j) < f(a0,i, ..., an−1,i), which implies that f(a0,i, ..., an−1,i) /≤ f(a0,j, ..., an−1,j). Since

f is weak order preserving, we have that a0,i /≤ a0,j, or a1,i /≤ a1,j, . . . , or an−1,i /≤ an−1,j. So, for all

i < j with i, j ∈ ω, there exists some p ∈ n such that ap,i /≤ ap,j, i.e. ap,j < ap,i.

Now, take any {i, j} ∈ [ω]2. We may assume, w.l.o.g., that i < j. Then, let {i, j} ↦ p where p

is the least element of n such that ap,j < ap,i. This map is well defined since such a p is, as seen

above, guaranteed to exist and the “least” clause guarantees uniqueness and is ensured by n’s being

well ordered. Thus, this defines a coloring function g ∶ [ω]2 → n. But, by Ramsey’s theorem,

ω → (ω)2n. Thus, there is some p ∈ n and Γ ⊆ ω with ∣Γ∣ = ω such that, for each {i, j} ∈ [Γ]2, we have

g({i, j}) = p.

Now we look to show this implies that Ap contains a strictly decreasing ω-sequence. To do this,

consider the set {ap,i ∈ Ap ∶ i ∈ Γ}. Since < restricted to Γ is a well order and ∣Γ∣ = ω, (Γ,<) is

isomorphic to (ω,<). Let φ ∶ ω → Γ be the unique isomorphism. This allow us to define a sequence

(ap,φ(i))i∈ω. Now we must verify that (ap,φ(i))i∈ω is strictly decreasing. Take any i, j ∈ ω such that

i < j. Then φ(i) < φ(j). Since φ(i), φ(j) ∈ Γ, it follows that g({φ(i), φ(j)}) = p. Further, as

φ(i) < φ(j), we have ap,φ(j) < ap,φ(i), by the definition of g. Thus the ω-sequence (ap,φ(i))i∈ω is

strictly decreasing and contained in Ap. Thus, Ap is not well ordered, a contradiction.
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So, we may conclude that f[A0, . . . ,An−1] is well ordered, demonstrating that, if A0, . . . ,An−1 are

well-ordered subsets of R, then the subset

f[A0, . . . ,An−1] = {f(a0, . . . , an−1) ∶ a0 ∈ A0, . . . , an−1 ∈ An−1}

of R is also well-ordered.

�
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