Set Theory (MATH 6730)

Clubs and Stationary Sets

Definition 1. Let α be an ordinal, and let $C \subseteq \alpha$. We say that

- C is unbounded in α if for every $\beta < \alpha$ there exists $\gamma \in C$ such that $\beta \leq \gamma$;¹
- C is closed in α if for every limit ordinal $\beta < \alpha$ such that $C \cap \beta$ is unbounded in β we have that $\beta \in C$;
- C is club in α if it is closed and unbounded in α .

Example 2. Let α be an ordinal.

- (i) α is club in α ; in particular, \emptyset is club in 0.
- (ii) If α is a successor ordinal, say $\alpha = \beta + 1$, then $\{\beta\}$ is club in α .
- (iii) If α is a limit ordinal, then the set $[\beta, \alpha) = \{\gamma < \alpha : \gamma \ge \beta\}$ is club in α for every $\beta < \alpha$.
- (iv) If α is a limit ordinal of countable cofinality, then for every strict order preserving function $f: \omega = cf(\alpha) \to \alpha$ such that $C = rng(\alpha)$ is unbounded in α we have that C is club in α .²
- (v) If α is a limit ordinal of uncountable cofinality and $C \subseteq \alpha$ is club in α , then so are the following subsets of C:

 $D = \{ \gamma \in C : \gamma \text{ is a limit ordinal} \},\$

 $E = \{\gamma < \alpha : \gamma \text{ is a limit ordinal and } C \cap \gamma \text{ is unbounded in } \gamma\} (\subseteq D).$

(vi) A non-example: Under the assumptions of (v), $X = \{\gamma \in C : \gamma \text{ is a successor ordinal}\}$ is not club in α .

Clubs in an ordinal α are most interesting if α is a limit ordinal of uncountable cofinality.

¹If α has no largest element (i.e., α is not a successor ordinal), then this definition coincides with our earlier definition; see Definition 4.8 in the handout "The Axiom of Choice. Cardinals and Cardinal Arithmetic".

 $^{^{2}}$ Cf. Theorem 4.11 in the same handout and Corollary 6 below.

Before stating our first result on clubs, the following observation on subsets of ordinals will be useful. Recall³ that for every well-ordered set (B, \prec) there exists a unique ordinal β such that $(\beta, <)$ is isomorphic to (B, \prec) . We will refer to this ordinal β as the order type of (B, \prec) .

Fact 3. If α is an ordinal, $\Gamma \subseteq \alpha$, and Γ has order type β , then $\beta \leq \alpha$.

Theorem 4. Let α be a limit ordinal, and let $C \subseteq \alpha$. Then C is club in α if and only if (†) C is unbounded in α , and

there exist $\beta \in \mathbf{On}$ and a normal function⁴ $f: \beta \to \alpha$ such that $C = \operatorname{rng}(f)$.

Idea of Proof.

⇒: Let C be club in α , let $\beta (\leq \alpha)$ be the order type of C and let f be an isomorphism $\beta \rightarrow (C, <)$, considered as a function $\beta \rightarrow \alpha$.

- Clearly, $C = \operatorname{rng}(f)$ is unbounded in α and f is strict order preserving.
- To prove that f is also continuous, let $\delta < \beta$ be a limit ordinal. Using that C is closed in α , show that $\bigcup_{\varepsilon < \delta} f(\varepsilon) \in C$, and conclude that $f(\delta) = \bigcup_{\varepsilon < \delta} f(\varepsilon)$.

 \Leftarrow : Assume that $f: \beta \to \alpha$ is a normal function such that $C = \operatorname{rng}(f)$ is unbounded in α .

• To show that C is closed in α , let $\gamma < \alpha$ be a limit ordinal such that $C \cap \gamma$ is unbounded in γ . Verify that $\delta := \bigcup f^{-1}[C \cap \gamma]$ is a limit ordinal $< \beta$, and prove that

$$f(\delta) = \bigcup_{\varepsilon < \delta} f(\varepsilon) = \bigcup (C \cap \gamma) = \gamma.$$

Hence $\gamma \in \operatorname{rng}(f) = C$.

 $^{^3\}mathrm{See}$ Theorem 4.4 on the handout 'Ordinals. Transfinite Induction and recursion'.

⁴See Definition 5.1 on the same handout.

Corollary 5. Let κ be a regular cardinal, and let $C \subseteq \kappa$. Then C is club in κ if and only if (‡) there exists a normal function $f \colon \kappa \to \kappa$ such that $C = \operatorname{rng}(f)$.

Proof. By Theorem 4, it suffices to show the following:

(†) holds for $\alpha = \kappa$ if and only if (‡) holds.

To prove this observe that

in \Rightarrow : since C is unbounded in κ , it must be that $\beta \ge |\beta| = |C| \ge cf(\kappa) = \kappa$, so $\beta = \kappa$; and

in \Leftarrow : C is unbounded in κ , because (‡) forces $|C| = \kappa$.

Corollary 6. Every limit ordinal α has a club of order type $cf(\alpha)$.

Proof. We saw earlier⁵ that there exists a strict order preserving function $f: cf(\alpha) \to \alpha$ such that rng(f) is unbounded in α . Now we define a function $g: cf(\alpha) \to \alpha$ by recursion as follows:

$$g(\delta) = \begin{cases} 0 & \text{if } \delta = 0, \\ \max(f(\delta), g(\varepsilon) + 1) & \text{if } \delta = \varepsilon + 1 \text{ for some ordinal } \varepsilon, \\ \bigcup_{\varepsilon < \delta} g(\varepsilon) & \text{if } \delta \text{ is a limit ordinal} \end{cases} \quad (\delta < \operatorname{cf}(\alpha)).$$

It follows that

- g is a normal function $cf(\alpha) \to \alpha;^6$
- rng(g) is unbounded in α , since $g(\delta) \ge f(\delta)$ for all $\delta < cf(\alpha)$.

Theorem 7. If α is a limit ordinal of uncountable cofinality, then the intersection of fewer than $cf(\alpha)$ clubs of α is a club of α .

Example 8. If, in Theorem 7, we drop the assumption $cf(\alpha) > \omega$ or the assumption that the number of clubs intersected is $\langle cf(\alpha) \rangle$, then the conclusion of the theorem may fail.

- (i) Let $\alpha = \omega$ (so $cf(\alpha) = \omega$). Then $C_0 = \{n \in \omega : n \text{ even}\}$ and $C_1 = \{n \in \omega : n \text{ odd}\}$ are clubs in ω , $2 < cf(\omega)$, but $C_0 \cap C_1 = \emptyset$.
- (ii) Let $f: cf(\alpha) \to \alpha$ (α a limit ordinal) be s.o.p. such that rng(f) is unbounded in α . Then each interval $C_{\xi} = [f(\xi), \alpha)$ ($\xi < cf(\alpha)$) is club in α , but $\bigcap_{\xi < cf(\alpha)} C_{\xi} = \emptyset$.

 $^{^{5}}$ See Theorem 4.11(i) on the handout "The Axiom of Choice. Cardinals and Cardinal Arithmetic".

⁶Use Theorem 5.2 on the handout "Ordinals. Transfinite Induction and Recursion".

Theorem 7. If α is a limit ordinal of uncountable cofinality, then the intersection of fewer than $cf(\alpha)$ clubs of α is a club of α .

Idea of Proof of Theorem 7. Let $\langle C_{\xi} : \xi < \beta \rangle$ ($\beta < cf(\alpha)$) be a system of clubs in α , and let $D = \bigcap_{\xi < \beta} C_{\xi}.$

- D is closed in α .
- D is unbounded in α : Let $\gamma < \alpha$. Show that
 - there exists a sequence $\langle \varepsilon_n : n \in \omega \rangle$ of ordinals $\langle \alpha \rangle$ such that $\varepsilon_0 = \gamma$ and for each $n \in \omega$ and $\xi < \beta$ we have that $\varepsilon_{n+1} \ge \theta_{n,\xi}$ for some $\theta_{n,\xi} \in C_{\xi}$ with $\varepsilon_n < \theta_{n,\xi}$. - Let $\delta = \bigcup_{n \in \omega} \varepsilon_n$. Then $\gamma < \delta < \alpha$ and $\delta \in C_{\xi}$ for all $\xi < \beta$, so $\delta \in D$.

Definition 9. Let α be a limit ordinal. The *diagonal intersection* of a system $\langle C_{\xi} : \xi < \alpha \rangle$ of subsets of α is defined by

$$\Delta_{\xi < \alpha} C_{\xi} := \{ \beta \in \alpha : \beta \in C_{\xi} \text{ for all } \xi < \beta \}.$$

Example 10. If, in Example 8(ii), α is a regular cardinal (hence, $cf(\alpha) = \alpha$) and f is normal, then check that for a limit ordinal $\beta < \alpha$ we have $\beta \in \Delta_{\xi < \alpha} C_{\xi} = \Delta_{\xi < \alpha} [f(\xi), \alpha)$ iff $f(\beta) = \beta$.

Theorem 11. Let α be a limit ordinal with $cf(\alpha) > \omega$, and let $\langle C_{\xi} : \xi < \alpha \rangle$ be a system of clubs in α .

- (i) If $\bigcap_{\xi < \beta} C_{\xi}$ is unbounded in α for all $\beta < \alpha$, then $\Delta_{\xi < \alpha} C_{\xi}$ is club in α .
- (ii) If α is a regular cardinal, then $\Delta_{\xi < \alpha} C_{\xi}$ is club in α .

Idea of Proof. (ii) follows from (i) by Theorem 7. To prove (i), let $D = \Delta_{\xi < \alpha} C_{\xi}$.

- *D* is closed: If $\beta < \alpha$ is a limit ordinal and $D \cap \beta$ is unbounded in β , then for each $\xi < \beta, C_{\xi} \cap \beta (\supseteq [\xi + 1, \beta) \cap (D \cap \beta))$ is unbounded in β , so $\beta \in C_{\xi}$.
- D is unbounded in α : Let $\gamma < \alpha$. Show that
 - there exists a sequence $\langle \varepsilon_n : n \in \omega \rangle$ of ordinals $\langle \alpha \rangle$ such that $\varepsilon_0 = \gamma$ and for each $n \in \omega$, ε_{n+1} is an element of $\bigcap_{\xi < \varepsilon_n} C_{\xi}$ greater than ε_n .
 - As before, let $\delta := \bigcup_{n \in \omega} \varepsilon_n$, and show that $\gamma < \delta \in D$.

Definition 12. Let A be a set. A finitary partial operation on A is a function f with $dmn(f) \subseteq {}^{m}A$ for some $m \in \omega$ and with $rng(f) \subseteq A$. A subset B of A is closed under such an operation f if for every $b \in {}^{m}B \cap dmn(f)$ we have that $f(b) \in B$.

Notation 13. For any set A and any cardinal κ , let

$$[A]^{\kappa} = \{X \in \mathcal{P}(A) : |X| = \kappa\},\$$
$$[A]^{<\kappa} = \{X \in \mathcal{P}(A) : |X| < \kappa\},\$$
$$[A]^{\leq\kappa} = \{X \in \mathcal{P}(A) : |X| \le \kappa\}.\$$

Theorem 14. Let κ be an uncountable regular cardinal. If $X \in [\kappa]^{<\kappa}$ and \mathcal{F} is a set of finitary partial operations on X with $|\mathcal{F}| < \kappa$, then the set

 $C = \{ \alpha < \kappa : X \subseteq \alpha \text{ and } \alpha \text{ is closed under each } f \in \mathcal{F} \}$

is club in κ .

Definition 15. Let α be a limit ordinal. A subset S of α is said to be *stationary* if S has a nonempty intersection with every club of α .

Example 16. Let α be a limit ordinal with $cf(\alpha) > \omega$. Then

- every club in α is stationary;
- every subset of α containing a club is stationary.

Theorem 17. If α is a limit ordinal and κ is a regular cardinal such that $\kappa < cf(\alpha)$, then

$$S = \{\beta < \alpha : \mathrm{cf}(\beta) = \kappa\}$$

is a stationary subset of α .

Idea of Proof. Let C be a club in α . To show that $C \cap S \neq \emptyset$, argue that

- there exists a normal function $f: cf(\alpha) \to \alpha$ such that rng(f) is club in α ;
- there exists a normal function $g: cf(\alpha) \to C$ such that $g(\beta + 1) > \max\{g(\beta), f(\beta)\}$ for all $\beta < cf(\alpha)$; hence, rng(g) is club in α ;
- $g(\kappa) \in C \cap S$.

Lemma 18. Let α be a limit ordinal with $cf(\alpha) > \omega$. If $\beta < cf(\alpha)$, then for any system $\langle N_{\xi}: \xi < \beta \rangle$ of nonstationary sets in α , the union $\bigcup_{\xi < \beta} N_{\xi}$ is also nonstationary in α .

Definition 19. Let S be a set of ordinals. A function $f \in {}^{S}\mathbf{On}$ is called *regressive* if $f(\gamma) < \gamma$ for all $\gamma \in S \setminus \{0\}$.

Theorem 20. (Fodor's Lemma or "Pressing Down Lemma") Let α be a limit ordinal with $cf(\alpha) > \omega$, let S be a stationary subset of α , and let $f: S \to \alpha$ be a regressive function.

- (i) Then there exists $\beta < \alpha$ such that $f^{-1}[\beta]$ is stationary in α .
- (ii) Moreover, if α is a regular cardinal, then there exists $\gamma < \alpha$ such that $f^{-1}[\{\gamma\}]$ is stationary in α .

Idea of Proof. (i) Assume there is no such β . Then there exists a system $\langle C_{\beta} : \beta < \alpha \rangle$ of clubs in α such that $C_{\beta} \cap f^{-1}[\beta] = \emptyset$ for all $\beta < \alpha$. Let D be a club in α of order type $cf(\alpha)$ (cf. Corollary 6), and for each $\beta < \alpha$ let $\tau(\beta)$ denote the least member of D greater than β . For every $\beta < \alpha$ let

$$E_{\beta} = \bigcap_{\xi \in D \cap (\tau(\beta)+1)} C_{\xi}$$

Use Theorems 7, 11, and Example 2(v) to show that

- for each $\beta < \alpha$, E_{β} is club in α and satisfies $E_{\beta} \cap f^{-1}[\beta] = \emptyset$;
- F = Δ_{ξ<α}E_ξ is club in α;
 G = {β ∈ F : β is a limit ordinal} is club in α.

Now let $\delta \in G \cap S$, and argue that

- there exists $\xi < \delta$ such that $f(\delta) < \xi$;
- $\delta \in F$ and hence $\delta \in E_{\xi}$;
- $\delta \notin f^{-1}[\xi]$, which contradicts $f(\delta) < \xi$.

(ii) With the β from part (i) we have that $f^{-1}[\beta] = \bigcup_{\gamma < \beta} f^{-1}[\{\gamma\}]$ is stationary in α . By Lemma 18 at least one of the sets $f^{-1}[\{\gamma\}]$ ($\gamma < \beta$) must be stationary in α .

We will soon see an application of Fodor's Lemma.⁷

⁷See also Theorems 19.10-12 in *Lectures on Set Theory* by J. Donald Monk.

Next we introduce an important combinatorial principle, called \Diamond (*diamond*), which can be proved to be consistent with ZFC (if ZFC is consistent). We will show that ZFC together with \Diamond implies CH and the existence of a Suslin tree.

Definition 21. \Diamond is the following statement:

There exists a sequence $\langle A_{\alpha} : \alpha < \omega_1 \rangle$ of sets with the following properties:

- $A_{\alpha} \subseteq \alpha$ for each $\alpha < \omega_1$, and
- For every subset A of ω_1 , the set $\{\alpha < \omega_1 : A \cap \alpha = A_\alpha\}$ is stationary in ω_1 .

A sequence $\langle A_{\alpha} : \alpha < \omega_1 \rangle$ with these properties is called a \Diamond -sequence.

A \diamond -sequence may be thought of as an ω_1 -sequence of subsets of ω_1 which — in a sense — captures all subsets of ω_1 .

Theorem 22. ZFC $\cup \{\Diamond\}$ *implies CH.*

Proof. Let $\langle A_{\alpha} : \alpha < \omega_1 \rangle$ be a \diamond -sequence. We prove $(|\mathcal{P}(\omega)| =) 2^{\aleph_0} \leq \aleph_1$ by showing that there exists an injective function $f : \mathcal{P}(\omega) \to \omega_1$.

- If $A \in \mathcal{P}(\omega)$, then since $\{\alpha < \omega_1 : A \cap \alpha = A_\alpha\}$ is stationary in ω_1 there exists an infinite $\beta < \omega_1$ such that $A \cap \beta = A_\beta$. Since $A \subseteq \omega \subseteq \beta$, we get $A = A_\beta$.
- Therefore, the assignment

 $A \mapsto \text{the least } \beta < \omega_1 \text{ such that } A = A_\beta$

defines a function $f: \mathcal{P}(\omega) \to \omega_1$, which is clearly injective.

Our goal now is to prove that \Diamond implies the existence of a Suslin tree. Since a Suslin tree has cardinality ω_1 , we will construct a Suslin tree $T = (\omega_1, \prec)$ with ω_1 as its set of elements. We will use the following notation.

Notation 23. If $T = (\omega_1, \prec)$ is an ω_1 -tree and $\alpha < \omega_1$, let

$$T \restriction \alpha = \{ \beta < \omega_1 : \operatorname{ht}(\beta) < \alpha \}.$$

We will also use the notation $T \upharpoonright \alpha$ for the (normal) subtree of T with underlying set $T \upharpoonright \alpha$.

Lemma 24. If $T = (\omega_1, \prec)$ is an ω_1 -tree and A is a maximal antichain in T, then the set (1) $C = \{\alpha < \omega_1 : T \upharpoonright \alpha = \alpha \text{ and } A \cap \alpha \text{ is a maximal antichain in } T \upharpoonright \alpha \}$ is club in ω_1 .

Lemma 24. If $T = (\omega_1, \prec)$ is an ω_1 -tree and A is a maximal antichain in T, then the set (1) $C = \{\alpha < \omega_1 : T | \alpha = \alpha \text{ and } A \cap \alpha \text{ is a maximal antichain in } T | \alpha \}$ is club in ω_1 .

Proof. To prove that C is closed, let $\alpha < \omega_1$ be a limit ordinal such that $C \cap \alpha$ is unbounded in α . Our goal is to show that $\alpha \in C$. The following observation will be used repeatedly:

- (†) For each $\gamma < \alpha$ there exists $\delta \in C \cap \alpha$ such that $\gamma < \delta$, so we have that
 - $\gamma \in \delta = T \upharpoonright \delta \subseteq T \upharpoonright \alpha$, and
 - $A \cap \delta$ is a maximal antichain in $T \upharpoonright \delta$.

Now $\alpha \in C$ can be verified as follows.

- $T \upharpoonright \alpha \subseteq \alpha$: If $\beta \in T \upharpoonright \alpha$, then $\beta \in T \upharpoonright \gamma$ for some $\gamma < \alpha$, so for any δ from (†), $\beta \in T \upharpoonright \gamma \subseteq T \upharpoonright \delta = \delta \subseteq \alpha$.
- $T \upharpoonright \alpha \supseteq \alpha$: If $\gamma \in \alpha$, then for any δ from (†) we get that $\gamma \in \delta = T \upharpoonright \delta \subseteq T \upharpoonright \alpha$.
- $A \cap \alpha$ is a maximal antichain in $T \upharpoonright \alpha$: Clearly $A \cap \alpha$ is an antichain in $T \upharpoonright \alpha$, so we need to show only that every $\beta \in T \upharpoonright \alpha$ is comparable (in T) to some element of $A \cap \alpha$.⁸ Choose $\gamma < \alpha$ such that $\beta \in T \upharpoonright \gamma$. For any δ from (\dagger) we have that $A \cap \delta$ is a maximal antichain in $T \upharpoonright \delta$, so β is comparable (in T) to an element of $A \cap \alpha$.

To prove that C is unbounded in ω_1 , consider the following unary functions f, g, h on ω_1 : for each $\beta < \omega_1$, let $f(\beta) = ht(\beta), g(\beta) = \bigcup Lev_{\beta}(T)$, and let $h(\beta)$ be an element of A comparable (in T) to β . By Theorem 14,

$$D = \{ \alpha < \omega_1 : \alpha \text{ is closed under } f, g, h \}$$

is club in ω_1 . It suffices to show that $D \subseteq C$. Let $\alpha \in D$.

- $T \upharpoonright \alpha \subseteq \alpha$: If $\beta \in T \upharpoonright \alpha$, then $\gamma := \operatorname{ht}(\beta) \in \alpha$, so $\beta \in \operatorname{Lev}_{\gamma}(T)$ and $\beta \leq g(\gamma) \in \alpha$.
- $T \upharpoonright \alpha \supseteq \alpha$: If $\beta \in \alpha$, then $ht(\beta) = f(\beta) \in \alpha$, so $\beta \in T \upharpoonright \alpha$.
- $A \cap \alpha$ is a maximal antichain in $T \upharpoonright \alpha$: If $\beta \in T \upharpoonright \alpha$, then $h(\beta) \in A \cap \alpha$ is comparable (in T) to β .

⁸We call two elements u, v of a tree (T, \prec) — or, more generally, of a partially ordered set (T, \prec) — comparable if $u \prec v$ or u = v or $v \prec u$.

Lemma 25. (Assumes \Diamond) Let $T = (\omega_1, \prec)$ be an eventually branching ω_1 -tree, and let $\langle A_{\alpha} : \alpha < \omega_1 \rangle$ be a \Diamond -sequence. Assume that

(*) for every limit ordinal $\alpha < \omega_1$, if $T \upharpoonright \alpha = \alpha$ and A_α is a maximal antichain in $T \upharpoonright \alpha$, then for each $x \in \text{Lev}_\alpha(T)$ there exists $y \in A_\alpha$ such that $y \prec x$.

Then T is a Suslin tree.

Sketch of Proof. By our earlier sufficient condition⁹ we have to show only that every maximal antichain A in T is countable.

- By Lemma 24, the set C in (1) is club in ω_1 .
- There exists $\alpha \in C$ such that $A \cap \alpha = A_{\alpha}$; fix such an α .
- Claim. For all β in T, if $ht(\beta) \ge \alpha$, then $\beta \notin A$.
- Therefore, if $\beta \in A$, then $ht(\beta) < \alpha$, so $\beta \in T \upharpoonright \alpha = \alpha$; this proves that $A \subseteq \alpha$, hence A is countable.

⁹See Theorem 15 on the handout "Trees".

Theorem 26. $ZFC \cup \{\Diamond\}$ implies the existence of a Suslin tree.

Sketch of Proof. Let $\langle A_{\alpha} : \alpha < \omega_1 \rangle$ be a \diamond -sequence. Using this sequence, we will construct a Suslin tree $T = (\omega_1, \prec)$ such that $\operatorname{Lev}_{\beta}(T) = \{\omega \cdot \beta + m : m \in \omega\}$ for each $\beta < \omega_1$. The construction proceeds by recursion, completely defining the normal subtree $T_{\beta} := (\omega \cdot \beta, \prec_{\beta})$ of T (up to level β) for each $\beta < \omega_1$, all in such a way that the 'union' $T = (\omega_1, \prec)$ of these trees — i.e., the tree $T := (\omega_1, \prec)$ where the relation \prec is defined on $\omega_1 = \omega \cdot \omega_1$ by $\prec := \bigcup_{\beta < \omega_1} \prec_{\beta}$ — satisfies the hypotheses of Lemma 25.

In more detail, we want to construct relations \prec_{β} on $\omega \cdot \beta$ for all $\beta < \omega_1$, by recursion, so that the following conditions are satisfied:

- (1_{β}) $T_{\beta} := (\omega \cdot \beta, \prec_{\beta})$ is a tree.
- (2_{β}) For each $\gamma < \beta$, T_{γ} is a subtree of T_{β} ; that is, $\prec_{\gamma} = \prec_{\beta} \upharpoonright (\omega \cdot \gamma)$.
- (3_{β}) For each $\gamma < \beta$, Lev_{γ}(T_{β}) = { $\omega \cdot \gamma + m : m \in \omega$ }.
- (4_{β}) For all $\gamma < \delta < \beta$ and $m \in \omega$ there exists $n \in \omega$ such that $\omega \cdot \gamma + m \prec_{\beta} \omega \cdot \delta + n$.
- (5_{β}) Whenever $\delta < \beta$ is a limit ordinal satisfying $\omega \cdot \delta = \delta$, and A_{δ} is a maximal antichain in T_{δ} , we have that for each $x \in \text{Lev}_{\delta}(T_{\beta})$ there exists $y \in A_{\delta}$ such that $y \prec_{\beta} x$.

Conditions $(1_{\beta})-(3_{\beta})$ ($\beta < \omega_1$) here just say that the tree $T = (\omega_1, \prec)$ (with $\prec := \bigcup_{\beta < \omega_1} \prec_{\beta}$) has the form outlined at the beginning of the proof, conditions (4_{β}) ($\beta < \omega_1$) make sure that T is well-pruned from each root up (T will have infinitely many roots!), and conditions (5_{β}) ($\beta < \omega_1$) have the effect of forcing T to satisfy assumption (*) in Lemma 25.

Now we describe the construction of the relations \prec_{α} on $\omega \cdot \alpha$ ($\alpha < \omega_1$) by recursion.

• For $\alpha \leq 1$, we define $\prec_{\alpha} := \emptyset$. Clearly, conditions $(1_{\alpha}) - (5_{\alpha})$ hold. Notice that the set $\text{Lev}_0(T_1)$ of roots of T_1 (and hence of T) is $\omega \cdot 1 = \omega$.

From now on let $\alpha > 1$, and assume that the relations \prec_{β} on $\omega \cdot \beta$ have been constructed for all $\beta < \alpha$ so that all conditions $(1_{\beta})-(5_{\beta})$ are met.

• If α is a limit ordinal, we define \prec_{α} on $\omega \cdot \alpha$ by $\prec_{\alpha} := \bigcup_{\beta < \alpha} \prec_{\beta}$. It is easy to see that conditions $(1_{\alpha}) - (5_{\alpha})$ are satisfied. • If $\alpha = \varepsilon + 2$ for some ordinal ε , then we define \prec_{α} on $\omega \cdot \alpha$ by

$$\prec_{\alpha} := \prec_{\varepsilon+1} \cup \{ (\xi, \, \omega \cdot (\varepsilon+1) + 2m) : \xi \preceq_{\varepsilon+1} \omega \cdot \varepsilon + m, \, m \in \omega \} \\ \cup \{ (\xi, \, \omega \cdot (\varepsilon+1) + 2m + 1) : \xi \preceq_{\varepsilon+1} \omega \cdot \varepsilon + m, \, m \in \omega \}.$$

Again, it is easy to check that conditions $(1_{\alpha})-(5_{\alpha})$ hold.

- Finally, let $\alpha = \varepsilon + 1$ where ε is a limit ordinal. In this case, the definition of \prec_{α} requires several steps. The goal of the first four steps is to assign a(n appropriately chosen) branch of T_{ε} to every element of T_{ε} . So, for steps 1–4 below, let $x \in \omega \cdot \varepsilon$ be an arbitrary element of T_{ε} .
 - 1. First, we choose an element y_0^x of T_{ε} as follows:
 - If $\omega \cdot \varepsilon = \varepsilon$ and A_{ε} is a maximal antichain in T_{ε} , and hence there exists $z \in A_{\varepsilon}$ such that z is comparable to x, then fix such a z and let y_0^x be an element of T_{ε} such that $x, z \prec_{\varepsilon} y_0^x$.

- Otherwise, let
$$y_0^x = x$$
.

- 2. Let $\langle \xi_n : n \in \omega \rangle$ be a strictly increasing sequence of ordinals $\langle \varepsilon \rangle$ such that $\xi_0 := \operatorname{ht}(y_0^x, T_{\varepsilon})$ and $\bigcup_{n \in \omega} \xi_n = \varepsilon$. (Such a sequence exists, because $\operatorname{cf}(\varepsilon) = \omega$.)
- 3. Use the conditions (4_{ξ_n}) $(n < \omega)$ to extend y_0^x , by recursion on ω , to a sequence $\langle y_n^x : n < \omega \rangle$ such that $\operatorname{ht}(y_n^x, T_{\varepsilon}) = \xi_n$ for all $n < \omega$.
- 4. Let B(x) be the unique branch of T_{ε} containing all elements y_n^x $(n < \omega)$; that is, let

 $B(x) := \{ u \in \omega \cdot \varepsilon : u \le y_n^x \text{ for some } n < \omega \}.$

5. Now, choose and fix a bijection $\omega \to \omega \cdot \varepsilon$, $n \mapsto x_n$, and define \prec_{α} as follows:

$$\prec_{\alpha} := \prec_{\varepsilon} \cup \{ (u, \omega \cdot \varepsilon + n) : u \in B(x_n) \}.$$

It is not hard to verify that conditions $(1_{\alpha})-(5_{\alpha})$ hold.

This finishes the construction of the trees T_{β} ($\beta < \omega_1$) so that all conditions $(1_{\beta})-(5_{\beta})$ ($\beta < \omega_1$) are satisfied. Hence, $T = (\omega_1, \prec)$ (with $\prec := \bigcup_{\beta < \omega_1} \prec_{\beta}$) is an ω_1 -tree. The construction at levels $\alpha = \varepsilon + 2$ shows that T is eventually branching, and conditions (5_{β}) ($\beta < \omega_1$) ensure that T satisfies assumption (*) of Lemma 25. Hence, T is a Suslin tree. \Box