
Set Theory (MATH 6730)

Infinite Combinatorics

We will discuss results in two topics: ∆-systems and partition calculus for infinite sets (=
infinitary Ramsey theory).

1. ∆-Systems

Definition 1.1. A ∆-system (or sunflower) is a family A of sets with the property that
there is a set r such that A ∩ B = r for any two distinct A,B ∈ A. The set r is called the
root or kernel of A.

Theorem 1.2. (General ∆-System Theorem)
Let κ and λ be cardinals such that ω ≤ κ < λ, λ is regular, and

∣∣[α]<κ
∣∣ < λ for all α < λ.

If A is a collection of sets such that |A| < κ for all A ∈ A and |A| ≥ λ, then there exists a
∆-system B ⊆ A with |B| = λ.

Proof. Replacing A by a subset of size λ, we may assume that |A| = λ. Let λ→ A, α 7→ Aα
be a bijection. Now let µ := κ if κ is regular, and let µ := κ+ if κ is singular. Then:

• µ is a regular cardinal with µ < λ.
For singular κ use the assumptions to show that µ = κ+ ≤ κcf(κ) < λ.

• S := {α < λ : α is a limit ordinal and cf(α) = µ} is a stationary subset of λ.

• There exists a one-to-one function f :
⋃
A → λ. Let bα := f [Aα] for each α < λ.

• There exists a function g : S → λ such that
⋃

(bα ∩ α) < g(α) < α for all α ∈ S.
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• By Fodor’s Lemma1, there exists β < λ such that S ′ := g−1[{β}] (⊆ S) is stationary
in λ.

• |S ′| = λ, and for all α ∈ S ′ we have that bα ∩ α ∈ [β]<κ.

• The function S ′ → [β]<κ, α 7→ bα ∩ α has a kernel class of size λ; that is,
there exist S ′′ ⊆ S ′ and B ∈ [β]<κ such that |S ′′| = λ and bα ∩ α = B for all α ∈ S ′′.

• Now show that there exists a sequence 〈αξ : ξ < λ〉 of elements of S ′′ such that
(i) αξ > αη for all η < ξ, and
(ii) αξ > δ for every δ ∈

⋃
η<ξ bαη .

• Let B = {Aαξ
: ξ < λ} (⊆ A) and let r = f−1[B]. Then

– |B| = λ, and
– Aαξ

∩ Aαη = r for any η < ξ < λ, so B is a ∆-system.

�

1See Theorem 20 on the handout “Clubs and Stationary Sets”.
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Theorem 1.2. (General ∆-System Theorem)

Let κ and λ be cardinals such that ω ≤ κ < λ, λ is regular, and
∣∣[α]<κ

∣∣ < λ for all α < λ. If A is a

collection of sets such that |A| < κ for all A ∈ A and |A| ≥ λ, then there exists a ∆-system B ⊆ A
with |B| = λ.

Corollary 1.3. (∆-System Lemma or ∆-System Theorem)
Let λ be an uncountable regular cardinal. If A is a collection of finite sets with |A| ≥ λ, then
there exists a ∆-system B ⊆ A with |B| = λ.

Proof. This is the special case κ = ω of Theorem 1.2. The hypotheses of the theorem are
satisfied, because for every α < λ we have that∣∣[α]<ω

∣∣ ≤∑
n∈ω

|α|n ≤ max(|α|, ω) < λ.

�

Corollary 1.4. If CH holds and A is a collection of countable sets with |A| ≥ ω2, then there
exists a ∆-system B ⊆ A with |B| = ω2.

Proof. This is the special case κ = ω1, λ = ω2 of Theorem 1.2, assuming CH. The hypotheses
of the theorem are satisfied, because for every α < ω2, CH implies that∣∣[α]<ω1

∣∣ ≤ ωω1 = (2ω)ω = 2ω = ω1 < ω2.

�

Definition 1.5. An indexed ∆-system is a system 〈Ai : i ∈ I〉 of sets such that there is a
set r (called the root or kernel) such that Ai ∩ Aj = r for any two distinct i, j ∈ I.

Notice that some (possibly all) of the sets Ai (i ∈ I) may be equal.

Corollary 1.6. (Indexed ∆-System Theorem)
Let κ, λ be cardinals such that ω ≤ κ < λ, λ is regular, and

∣∣[α]<κ
∣∣ < λ for all α < λ. If

〈Ai : i ∈ I〉 is a system of sets such that |Ai| < κ for all i ∈ I and |I| ≥ λ, then there exists
J ⊆ I with |J | = λ such that 〈Ai : i ∈ J〉 is an indexed ∆-system.

Proof. Consider the equivalence relation ≡ on I defined by i ≡ j iff Ai = Aj. If some ≡-class
has size λ, choose that to be J . Otherwise:

• ≡ has ≥ λ equivalence classes.
• By AC, there exists K ⊆ I such that K has exactly one element from each ≡-class.
• Apply Theorem 1.2 to the family A = {Ak : k ∈ K}.

�
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2. Partition Calculus

Notation 2.1. Let ρ, σ, κ be cardinals with ρ 6= 0, and let 〈λα : α < ρ〉 be a sequence of
cardinals such that 1 ≤ σ ≤ λα ≤ κ for all α < ρ. We write

κ→ (〈λα : α < ρ〉)σ

to denote the following statement:

For every f : [κ]σ → ρ there exist α < ρ and Γ ∈ [κ]λα such that f
[
[Γ]σ

]
= {α}.

Equivalently:

For every coloring of the σ-element subsets of κ by ρ colors, there exist α < ρ and a
λα-element subset Γ of κ such that every σ-element subset of Γ has color α.

If ρ = r ∈ ω, we will write κ→ (λ0, . . . , λr−1)
σ instead of κ→ (〈λ0, . . . , λr−1〉)σ.

In the special case when λα = λ for all α < ρ, we abbreviate κ→ (〈λ : α < ρ〉)σ by

κ→ (λ)σρ .

Thus, κ→ (λ)σρ means that

For every f : [κ]σ → ρ there exists Γ ∈ [κ]λ such that
∣∣f[[Γ]σ

]∣∣ = 1.

Equivalently:

For every coloring of the σ-element subsets of κ by ρ colors, there exists a λ-element
subset Γ of κ such that every σ-element subset of Γ has the same color.

We say in this situation that Γ is monochromatic or homogeneous.

Facts 2.2. Under the same assumptions as above, we have the following:

(i) κ→ (〈λα : α < ρ〉)σ holds trivially for ρ = 1.
(ii) κ→ (〈λα : α < ρ〉)σ holds for σ = 1

• if κ >
∑

α<ρ µα for all sequences 〈µα : α < ρ〉 of cardinals such that µα < λα for
each α < ρ;
• in particular, if ρ is finite and κ is infinite.

(iii) κ → (〈λα : α < ρ〉)σ implies κ′ → (〈λ′α : α < ρ〉)σ, if κ ≤ κ′ and λα ≥ λ′α for all
α < ρ.

(iv) For 2 ≤ r ∈ ω, if κ→ (λ0, . . . , λr−2, µ)σ and µ→ (λr−1, λr)
σ, then

κ→ (λ0, . . . , λr−1, λr)
σ.
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Theorem 2.3. (Ramsey’s Theorem) For all nonzero natural numbers n and r,

ω → (ω)nr .

Sketch of Proof. By Facts 2.2(i) and (iv), our statement will follow by induction on r if we
prove it for r = 2.

We will prove ω → (ω)n2 by induction on n. The statement is clearly true for n = 1 (see
Facts 2.2(ii)). Now we assume that n ≥ 1 and ω → (ω)n2 holds. To prove ω → (ω)n+1

2 , let us
consider an arbitrary (but fixed) coloring of the (n + 1)-element subsets of ω by two colors
(red and blue). For any nonempty set S ⊆ ω, let min(S) denote the least element of S.

• Use the induction hypothesis to show that there exists a function

H : {(m,S) : m ∈ ω, S ∈ [ω \m+]ω} → [ω \m+]ω

such that the following conditions hold for all (m,S) ∈ dmn(H):
– H(m,S) ⊆ S, and
– every (n+1)-element set of the form {m}∪U with U ∈ [H(m,S)]n has the same

color.

• Define a sequence 〈Γk : k ∈ ω〉 of (infinite) subsets of ω by recursion on ω, using the
notation mk := min(Γk), as follows:

Γ0 = ω (hence, m0 = 0), and Γk+1 = H(mk,Γk \ {mk}) for all k ∈ ω.

Then, for all k ∈ ω,
– Γk+1 ⊂ Γk, mk+1 > mk, and mj ∈ Γk+1 for all j ≥ k + 1;
– every (n + 1)-element subset of ω of the form {mk} ∪ U with U ∈ [Γk+1]

n has
the same color; we will refer to this color as ‘the shade of mk’.

• {mk : k ∈ ω} has an infinite subset Γ := {mk : k ∈ I} whose members all have the
same shade, say blue. Then every (n+ 1)-element subset of Γ is blue. �
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The finite version of Ramsey’s Theorem stated below can be deduced from Theorem 2.3.2

Corollary 2.4. (Ramsey’s Theorem, finite version) For all nonzero natural numbers n, r
and `0, . . . , `r−1 such that n ≤ `0, . . . , `r−1, there exists a natural number k ≥ `0, . . . , `r−1
such that

k → (`0, . . . , `r−1)
n.

Ramsey’s Theorem implies the following fundamental properties of infinite partial orders
and infinite linear orders.

Corollary 2.5. If (P,<) is an infinite partial order, then either P has an infinite antichain3

or P has a subset order isomorphic to (ω,<) or (ω,>).

Proof. Let (P,≺) be a well-ordering of P . Now we apply the consequence |P | → (ω)23 of
Ramsey’s Theorem (i.e., a combination of Theorem 2.3 for r = 3 and Facts 2.2(iii)) to the
coloring of the 2-element subsets of P defined as follows: {p, q} with p ≺ q is red if p < q,
blue if p > q, and yellow if p, q are incomparable. �

Corollary 2.6. If (P,<) is an infinite linear order, then P has a subset order isomorphic
to (ω,<) or (ω,>).

2See pp. 270–271 of Lectures on Set Theory by J. Donald Monk.
3An infinite set in which any two distinct elements are incomparable.
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Next, we want to show that the analogue of Ramsey’s theorem fails for infinite successor
cardinals (in place of ω), by showing that the analog of Corollary 2.6 fails for infinite successor
cardinals.

Definition 2.7. Let κ be an infinite cardinal. The lexicographic ordering of κ2 is defined as
follows: for distinct elements f = 〈fα : α < κ〉 and g = 〈gα : α < κ〉 of κ2, let

f < g ⇔ for the least α < κ such that fα 6= gα we have fα = 0 < 1 = gα.

Theorem 2.8. Let κ be an infinite cardinal.

(i) The linear order (κ2, <), where < is the lexicographic ordering of κ2, has no subset
order isomorphic to (κ+, <) or (κ+, >).

(ii) 2κ 6→ (κ+)22.

Idea of Proof. (i) We proceed by contradiction. Assume there is a strictly increasing sequence
〈f (α) : α < κ+〉 of elements of (κ2, <). (The proof is similar if (κ2, <) contains a strictly
decreasing sequence 〈f (α) : α < κ+〉 of elements.)

Claim 2.9. If γ ≤ κ, Γ ∈ [κ+]κ
+

, and f (α)�γ < f (β)�γ for all α < β in Γ, then there exist
δ < γ and ∆ ∈ [Γ]κ

+
such that f (α)�δ < f (β)�δ for all α < β in ∆.

This yields a strictly decreasing ω-sequence κ = γ0 > γ1 > · · · > γi > γi+1 > . . . of ordinals,
which is impossible.

(ii) Suppose (ii) fails, that is, 2κ → (κ+)22. Then the same argument as in the proof of
Corollary 2.5 — except that we don’t need the color yellow — shows that (i) fails. �

Corollary 2.10. If κ is an infinite cardinal, then κ+ 6→ (κ+)22.

This shows that Ramsey’s theorem ω → (ω)nr does not generalize from ω to infinite
successor cardinals κ+. In fact, the statement “There exists an uncountable cardinal λ such
that λ→ (λ)22.” cannot be proved in ZFC. Such a cardinal λ is called weakly compact. It is
not hard to show that a weakly compact cardinal λ must be (strongly) inaccessible, i.e., it
must be an uncountable regular cardinal which satisfies 2µ < λ for all cardinals µ < λ. (The
last property follows from Theorem 2.8(ii) and Facts 2.2(iii).)

Next we will discuss two less straightforward generalizations of Ramsey’s Theorem. The
first one is to be compared to the negative result in Corollary 2.10.

Theorem 2.11. (Dushnik–Miller Theorem)4

For every infinite regular cardinal κ, we have that κ→ (κ, ω)2.

Proof. [Proof will be presented in class.] �

4The theorem is true for singular cardinals κ as well, but the proof is more difficult.
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Another generalization of Ramsey’s Theorem, to be compared to the negative result in
Theorem 2.8(ii), is the following.

Theorem 2.12. (Erdős–Rado Theorem for n = 2)
For every infinite cardinal κ we have that (2κ)+ → (κ+)2κ.

This is the special case n = 2 of Theorem 2.14 below.

Definition 2.13. For every infinite cardinal κ, the ordinal class function i(κ) assigning to
every α ∈ On a cardinal iα(κ) is defined by recursion as follows: i0(κ) = κ, and for all
α ∈ On,

iα(κ) = 2iβ(κ) if α = β + 1, and iα(κ) =
⋃
β<α

iβ(κ) if α is limit.

iα stands for iα(ω) = iα(ℵ0).5

Theorem 2.14. (Erdős–Rado Theorem)
For every infinite cardinal κ and for each nonzero natural number n,

(†)n
(
in−1(κ)

)+ → (κ+)nκ.

Proof. [Proof will be presented in class.] �

Theorem 2.8(ii) and the next theorem show that in Theorem 2.12, (2κ)+ cannot be replaced
by 2κ, even if the desired conclusion is significantly weakened.

Theorem 2.15. For every infinite cardinal κ, 2κ 6→ (3)2κ.

Proof. Consider the coloring of κ2 by κ colors defined as follows: for any two distinct elements
f = 〈fα : α < κ〉 and g = 〈gα : α < κ〉 of κ2, color {f, g} by the least ordinal α < κ such
that fα 6= gα. Then there is no monochromatic 3-element subset in κ2. �

Theorem 2.16. ω 6→ (ω)ω2 .

Proof. Let ([ω]ω, <) be a well-ordering, and define F : [ω]ω → 2 for each X ∈ [ω]ω by

F (X) :=

{
0 if there exists Y ∈ [X]ω such that Y < X,

1 otherwise.

Claim. F �[H]ω is not constant for any H ∈ [ω]ω.

• For a contradiction, assume F �[H]ω is constant, and ω → H, i 7→ mi is a bijection;
so H = {mi : i ∈ ω}.
• Show that F (X) = 1 for all X ∈ [H]ω. (Hint: F (X0) = 1 for the <-least element
X0 ∈ [H]ω).
• Consider the elements Zk = {m0,m2, . . . ,m2k} ∪ {m2i+1 : i ∈ ω} (k ∈ ω) of [H]ω, let
Z` be <-least among them, and argue that F (Zl+1) = 0, a contradiction.

�

5Alternative notation used in the literature for in(κ) (n ∈ ω) include expn(κ) and 2κn.


