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Definition 3.1. Let M be a c.t.m. of ZFC, and let P = (P,≤, 1) ∈ M be a forcing order. For each
formula ϕ(v0, . . . , vm−1) in the language of set theory, we define another formula

p �P,M ϕ(σ0, . . . ,σm−1)

[read: p forces ϕ(σ0, . . . ,σm−1) with respect to P and M ],

which states that

P is a forcing order, P ∈ M , σ0, . . . ,σm−1 ∈ MP , p ∈ P , and for every filter G ⊆ P
which is P-generic over M , if p ∈ G, then the formula ϕM [G](v0, . . . , vm−1) (= the
relativization of ϕ to M [G]) holds for the elements σ0G, . . . ,σ(m−1)G.

Theorem 3.8. Let P = (P,≤, 1) be a forcing order, and let p, q ∈ P and a, b ∈ RO(P).
(i) e[P ] is dense in RO(P)\{∅}, i.e., for any nonempty set Y ∈ RO(P) there exists p ∈ P such

that e(p) ⊆ Y .

(ii) e(p) = int
�
cl(P ↓ p)

�
= {r ∈ P : for all u ∈ P with u ≤ r, u and p are compatible}.

Hence, p ⊥ q iff e(p) ∩ e(q) = ∅.
(iii) The following conditions on p, q are equivalent:

(a) e(p) ⊆ e(q);
(b) {r ∈ P : r ≤ p, q} is dense below p.
Hence p ≤ q implies that e(p) ⊆ e(q), and e(p) ⊆ e(q) implies that p, q are compatible.

Definition 3.12. Let P be a forcing order, and let p ∈ P . For arbitrary formula ϕ (with all free
variables among v0, . . . , vm−1) and for all σ0, . . . ,σm−1 ∈ VP , we define p �∗ ϕ(σ0, . . . ,σm−1) to
mean that e(p) ⊆ [[ϕ(σ0, . . . ,σm−1)]].

The Forcing Theorem 3.13. Let M be a c.t.m of ZFC, let P ∈ M be a forcing order, and let
G ⊆ P be a filter that is P-generic over M . For any formula ϕ (with all free variables among
v0, . . . , vm−1) and for any σ0, . . . ,σm−1 ∈ MP , the following conditions are equivalent:

(a) ϕ(σ0G, . . . ,σ(m−1)G) holds in M [G].

(b) There is a p ∈ G such that
�
p �∗ ϕ(σ0, . . . ,σm−1)

�M
.

Proof of the Forcing Theorem. Most work goes into proving the equivalence of (a)–(b) for
atomic formulas. This is done by induction on the class relation R used in the simultaneous
definitions of [[σ = τ ]] and [[σ ∈ τ ]] (by recursion on R) in the proof of Theorem 3.9.

(b) ⇒ (a) for v0 = v1

Let σ, τ ∈ MP , and assume that there exists p ∈ G such that (p �∗ σ = τ)M , that is, such
that in M we have

(1) e(p) ⊆ [[σ = τ ]] =
�

(ξ,r)∈τ
(e(r)� ∨ [[ξ ∈ σ]]) ∧

�

(η,q)∈σ
(e(q)� ∨ [[η ∈ τ ]]).

Our goal is to show that σG = τG. By symmetry, it suffices to argue that σG ⊆ τG.
Let a ∈ σG = {ηG : (η, q) ∈ σ for some q ∈ G}; say a = ηG with (η, q) ∈ σ, q ∈ G. Then:

1○ e(p) ⊆ e(q)� ∨ [[η ∈ τ ]], by (1).
2○ e(p) ∧ e(q) ⊆ [[η ∈ τ ]], by 1○ (∧ both sides with e(q), and use the distributive law).
3○ there exists r ∈ G with r ≤ p, q, since G is a filter on P.
4○ e(r) ⊆ e(p) ∧ e(q) ⊆ [[η ∈ τ ]], by 3○ combined with Theorem 3.8(iii), and by 2○.
5○ (r �∗ η ∈ τ)M , by the definition of (�∗)M .
6○ a = ηG ∈ τG, by the induction hypothesis.


