Definition 3.1. Let M be a c.t.m. of ZFC, and let $\mathbb{P} = (P, \leq, 1) \in M$ be a forcing order. For each formula $\varphi(v_0, \ldots, v_{m-1})$ in the language of set theory, we define another formula

 $p \Vdash_{\mathbb{P},M} \varphi(\sigma_0,\ldots,\sigma_{m-1})$

[read: p forces $\varphi(\sigma_0, \ldots, \sigma_{m-1})$ with respect to \mathbb{P} and M],

which states that

 \mathbb{P} is a forcing order, $\mathbb{P} \in M$, $\sigma_0, \ldots, \sigma_{m-1} \in M^P$, $p \in P$, and for every filter $G \subseteq P$ which is \mathbb{P} -generic over M, if $p \in G$, then the formula $\varphi^{M[G]}(v_0, \ldots, v_{m-1})$ (= the relativization of φ to M[G]) holds for the elements $\sigma_{0G}, \ldots, \sigma_{(m-1)G}$.

Theorem 3.8. Let $\mathbb{P} = (P, \leq, 1)$ be a forcing order, and let $p, q \in P$ and $a, b \in RO(\mathbb{P})$.

- (i) e[P] is dense in $\operatorname{RO}(\mathbb{P}) \setminus \{\emptyset\}$, i.e., for any nonempty set $Y \in \operatorname{RO}(\mathbb{P})$ there exists $p \in P$ such that $e(p) \subseteq Y$.
- (ii) $e(p) = \operatorname{int}(\operatorname{cl}(P \downarrow p)) = \{r \in P : \text{for all } u \in P \text{ with } u \leq r, u \text{ and } p \text{ are compatible}\}.$ Hence, $p \perp q$ iff $e(p) \cap e(q) = \emptyset$.
- (iii) The following conditions on p, q are equivalent:
 (a) e(p) ⊆ e(q);
 (b) {r ∈ P : r ≤ p, q} is dense below p. Hence p ≤ q implies that e(p) ⊆ e(q), and e(p) ⊆ e(q) implies that p, q are compatible.

Definition 3.12. Let \mathbb{P} be a forcing order, and let $p \in P$. For arbitrary formula φ (with all free variables among v_0, \ldots, v_{m-1}) and for all $\sigma_0, \ldots, \sigma_{m-1} \in \mathbf{V}^P$, we define $p \Vdash^* \varphi(\sigma_0, \ldots, \sigma_{m-1})$ to mean that $e(p) \subseteq \llbracket \varphi(\sigma_0, \ldots, \sigma_{m-1}) \rrbracket$.

The Forcing Theorem 3.13. Let M be a c.t.m of ZFC, let $\mathbb{P} \in M$ be a forcing order, and let $G \subseteq P$ be a filter that is \mathbb{P} -generic over M. For any formula φ (with all free variables among v_0, \ldots, v_{m-1}) and for any $\sigma_0, \ldots, \sigma_{m-1} \in M^P$, the following conditions are equivalent:

- (a) $\varphi(\sigma_{0G}, \ldots, \sigma_{(m-1)G})$ holds in M[G].
- (b) There is a $p \in G$ such that $(p \Vdash^* \varphi(\sigma_0, \ldots, \sigma_{m-1}))^M$.

Proof of the Forcing Theorem. Most work goes into proving the equivalence of (a)–(b) for atomic formulas. This is done by induction on the class relation **R** used in the simultaneous definitions of $[\sigma = \tau]$ and $[\sigma \in \tau]$ (by recursion on **R**) in the proof of Theorem 3.9.

(b) \Rightarrow (a) for $v_0 = v_1$

Let $\sigma, \tau \in M^P$, and assume that there exists $p \in G$ such that $(p \Vdash^* \sigma = \tau)^M$, that is, such that in <u>M</u> we have

(1)
$$e(p) \subseteq \llbracket \sigma = \tau \rrbracket = \bigwedge_{(\xi, r) \in \tau} (e(r)' \lor \llbracket \xi \in \sigma \rrbracket) \land \bigwedge_{(\eta, q) \in \sigma} (e(q)' \lor \llbracket \eta \in \tau \rrbracket).$$

Our goal is to show that $\sigma_G = \tau_G$. By symmetry, it suffices to argue that $\sigma_G \subseteq \tau_G$. Let $a \in \sigma_G = \{\eta_G : (\eta, q) \in \sigma \text{ for some } q \in G\}$; say $a = \eta_G$ with $(\eta, q) \in \sigma$, $q \in G$. Then:

- (1) $e(p) \subseteq e(q)' \lor [\![\eta \in \tau]\!]$, by (1).
- (2) $e(p) \wedge e(q) \subseteq [\eta \in \tau]$, by (1) (\wedge both sides with e(q), and use the distributive law).
- (3) there exists $r \in G$ with $r \leq p, q$, since G is a filter on \mathbb{P} .
- (4) $e(r) \subseteq e(p) \land e(q) \subseteq [\eta \in \tau]$, by (3) combined with Theorem 3.8(iii), and by (2).
- (5) $(r \Vdash^* \eta \in \tau)^M$, by the definition of $(\Vdash^*)^M$.
- (6) $a = \eta_G \in \tau_G$, by the induction hypothesis.