
Set Theory (MATH 6730)

Background in Logic

Modern (axiomatic) set theory is developed within first-order logic. We will briefly review
the basic concepts and facts that we will need. It will be useful to start with sentential logic
(also called propositional logic), which can be viewed as ‘zeroth-order logic’.

1. Sentential Logic

The symbols used in sentential logic are

• the logical connective symbols ¬ and → (for ‘not’ and ‘if . . . then’),
• the sentential variables Si (i ∈ ω) where ω = {0, 1, . . . } denotes the set of natural

numbers, and
• (,) (parentheses).1

Any finite sequence of these symbols will be referred to as an expression. Equality of expres-
sions (in particular, equality of symbols) will be denoted by≡.2 The ‘meaningful’ expressions,
called sentential formulas, are the expressions that can be built up, in finitely many steps,
from sentential variables using the formula building operations

(1) ψ 7→ ¬ψ and (ψ, χ) 7→ (ψ → χ).

The precise definition is as follows.

Definition 1.1. A sentential formula construction is a finite sequence 〈ϕ0, . . . , ϕm−1〉 of
expressions such that m ≥ 1 and for each i < m one of the following holds:

• ϕi ≡ Sj for some j ∈ ω;
• ϕi ≡ ¬ϕk for some k < i;
• ϕi ≡ (ϕk → ϕl) for some k, l < i.

A sentential formula is an expression that occurs in a sentential formula construction.

1The use of parentheses can be avoided by using Polish notation.
2We use a symbols other than =, because in first order logic = will be a logical symbol.

1

2

It is important that sentential formulas are uniquely readable. Informally, this means that
for every sentential formula ϕ there is exactly one way to built up ϕ from sentential variables
using the formula building operations in (1). A precise formulation of a formally weaker,
but equivalent statement is the following theorem.

Theorem 1.2. For every sentential formula ϕ exactly one of the following three conditions
holds:

• ϕ ≡ Sj for some j ∈ ω;
• ϕ ≡ ¬ψ for some sentential formula ψ;
• ϕ ≡ (ψ → χ) for some sentential formulas ψ and χ.

Moreover:

• If ψ, ψ′ are sentential formulas such that ¬ψ ≡ ¬ψ′, then ψ ≡ ψ′.
• If ψ, χ, ψ′, χ′ are sentential formulas such that (ψ → χ) ≡ (ψ′ → χ′), then ψ ≡ ψ′

and χ ≡ χ′.

Theorem 1.2 says that for any sentential formula ϕ which is not a sentential variable, we
can uniquely determine

– the last formula-building operation used to obtain ϕ, and also
– the subformulas to which this formula-building operation was applied, to get ϕ.

Unique readability follows from this by induction (on the length of ϕ or on the length of
a sentential formula construction for ϕ). Warning: Sentential formula constructions for
sentential formulas are not unique.

3

The ‘meaning’ of a sentential formula ϕ is its truth value, given that we know the truth
values of the sentence symbols that occur in ϕ. For a rigorous discussion of evaluating
sentential formulas, we introduce the following concepts.

Definition 1.3. We define a truth assignment (or sentential assignment) to be a function
that maps the set {Si : i ∈ ω} of sentential variables into the set {0, 1} of truth values where
0 means ‘false’ and 1 means ‘true’.

Theorem 1.4. Every truth assignment f can be extended uniquely to a function f̂ that maps
the set of all sentential formulas into {0, 1} in such a way that

• f̂(Si) = f(Si) for all i ∈ ω (i.e., f̂ extends f);

• f̂(¬ψ) = 1− f̂(ψ) for all sentential formulas ψ; and

• f̂((ψ → χ)) = 0 iff f̂(ψ) = 1 and f̂(χ) = 0 holds for all sentential formulas ψ and χ.

Unique readability of sentential formulas is crucial in showing that f̂ is well-defined.
It is not hard to show that for any truth assignment f and sentential formula ϕ, the

truth value f̂(ϕ) depends only on the truth values that f assigns to the sentential variables
occurring in ϕ. Precisely:

Fact 1.5. Let ϕ be a sentential formula. If f, g are truth assignments such that f(Si) = g(Si)

for every sentential variable Si occurring in ϕ, then f̂(ϕ) = ĝ(ϕ).

We use this fact, for example, when we work with truth tables.

4

Our sentential formulas use only the logical connective symbols ¬ and →. Other logical
connectives, like ∨ (‘or’), ∧ (‘and’), and ↔ (‘if and only if’) can be expressed using ¬ and
→. Formally, we introduce the following definition.

Definition 1.6. For arbitrary sentential formulas ϕ and ψ we define

ϕ ∨ ψ :≡ ¬ϕ→ ψ, ϕ ∧ ψ :≡ ¬(ϕ→ ¬ψ), and ϕ↔ ψ :≡ (ϕ→ ψ) ∧ (ψ → ϕ).

For any truth assignment f we have f̂(¬ϕ → ψ) = 0 iff f̂(ϕ) = f̂(ψ) = 0. Therefore the
first definition is reasonable. Similar arguments apply to the other two definitions.

Definition 1.7. A sentential formula τ is called a tautology if f̂(τ) = 1 holds for all truth
assignments f .

Remarks. For the proof of Theorem 1.2, see Proposition 1.2 in [1].3 Note that in [1], sentential formulas are defined in
Polish notation; that is, in the third bullet of Definition 1.1, the right hand side is replaced by the expression →ϕkϕl,
and (ϕk → ϕl) is used only as an alternate notation for this expression. Therefore, adopting our Definition 1.1
requires minor changes in the proof of Proposition 1.2 to obtain a proof of Theorem 1.2.

For the proofs of Theorem 1.4 and Fact 1.5 see Propositions 1.3 and 1.4 in [1].

3[1] Lectures on Set Theory by J. Donald Monk.

5

2. First-Order Logic for Set Theory

The language of set theory, which we will denote by L, uses the following symbols:

• the logical symbols ¬, →, ∀, = (for ‘not’, ‘if . . . then’, ‘for all’, and ‘equality’),
• the variables vi (i ∈ ω),
• (,) (parentheses),4 and
• ∈ (a binary relation symbol).5

It will sometimes be useful to add constant symbols to L. For any set C of constant symbols,
LC will denote the language of set theory, expanded by the constant symbols in C.6

Any finite sequence of symbols in LC will be referred to as an expressions or LC-expressions.
As in sentential logic, we will use ≡ to denote equality of symbols and equality of expressions.
The ‘meaningful expressions’, called formulas or LC-formulas, are defined as follows.

Definition 2.1. An atomic formula is an expression of the form s = t or s ∈ t where each
one of s, t is a variable or a constant symbol.7

A formula construction sequence is a finite sequence 〈ϕ0, . . . , ϕm−1〉 of expressions such
that m ≥ 1 and for each i < m one of the following holds:

• ϕi is an atomic formula;
• ϕi ≡ ¬ϕk for some k < i;
• ϕi ≡ (ϕk → ϕl) for some k, l < i;
• ϕi ≡ ∀vl ϕk for some k < i and for some variable vl.

A formula is an expression that occurs in a formula construction sequence.

Informally, an expression is a formula iff it can be built up, in finitely many steps, from
atomic formulas by using the formula-building operations

(2) ψ 7→ ¬ψ, (ψ, χ) 7→ (ψ → χ), and ψ 7→ ∀vi ψ (i ∈ ω).

4As is sentential logic, the use of parentheses can be avoided by using Polish notation.
5Other first-order languages might have relation symbols of arbitrary arities (≥ 1), function symbols of

arbitrary arities (≥ 1), and constant symbols.
6For most purposes we may assume that C is finite or can be indexed by ω.
7In Polish notation an atomic formula would have the form =st or ∈st.

6

For the same reason as in sentential logic, LC-formulas are uniquely readable; that is, for
every formula ϕ there is exactly one way to built up ϕ from the atomic LC-formulas using
the formula building operations in (2). The analogue of Theorem 1.2 expressing this fact is
the following theorem.

Theorem 2.2. For every LC-formula ϕ exactly one of the following four conditions holds:

• ϕ is an atomic formula;
• ϕ ≡ ¬ψ for some formula ψ;
• ϕ ≡ (ψ → χ) for some formulas ψ and χ;
• ϕ ≡ ∀vi ψ for some formula ψ and some variable vi.

Moreover:

• If s♦ t and s′ � t′ are atomic formulas with ♦,� ∈ {=, ∈} such that s♦ t ≡ s′ � t′,
then s ≡ s′, ♦ ≡ �, and t ≡ t′.
• If ψ, ψ′ are formulas such that ¬ψ ≡ ¬ψ′, then ψ ≡ ψ′.
• If ψ, χ, ψ′, χ′ are formulas such that (ψ → χ) ≡ (ψ′ → χ′), then ψ ≡ ψ′ and χ ≡ χ′.
• If ψ, ψ′ are formulas and vi, vj are variable such that ∀vi ψ ≡ ∀vj ψ′, then i = j (i.e.,
vi ≡ vj) and ψ ≡ ψ′.

7

A subformula of a formula ϕ is defined to be a formula ϕ′ that appears in every construction
sequence for ϕ. More informally, ϕ′ is a subformula of ϕ if ϕ′ is constructed in the (unique)
process of building up ϕ from the atomic formulas using the formula building operations in
(2). A subformula may have more than one occurrence in ϕ.

The following fact is not hard to show (by induction).

Fact 2.3. Every quantifier symbol ∀ that occurs in a formula ϕ occurs as the first symbol of
a uniquely determined subformula of the form ∀vi ψ (hence ψ is also a subformula of ϕ).

Definition 2.4. Let ϕ be a formula. For every occurrence of the symbol ∀ in ϕ, if ∀vi ψ
is the subformula of ϕ described in Fact 2.3, then the expression ∀vi is referred to as a
quantifier in ϕ, and ψ is called the scope of this occurrence of the quantifier ∀vi.

For every occurrence of a variable vi in ϕ, this occurrence of vi is said to be bound in ϕ if
either vi is preceded by a ∀ symbol (i.e., vi is the variable in a quantifier ∀vi in ϕ), or vi is
in the scope of a quantifier ∀vi in ϕ. An occurrence of a variable in ϕ is called free if it is
not bound. We say that vi is a free variable of ϕ if vi has at least one free occurrence in ϕ.

A formula which has no free variables is called a sentence.

8

To attach ‘meaning’ to formulas, we need to specify

• the (set of) objects ∀ is applied to, and
• the meaning of the relation symbol ∈ and constant symbols for those objects.

This will be done by specifying a structure (for the language LC).

Definition 2.5. A structure A (for LC), also called an LC-structure, is

• a nonempty set A (called the universe of A), together with

• a binary relation ∈A on A (called the interpretation of the symbol ∈ in A), and

• for every constant symbol c, an element cA of A (called the interpretation of the
symbol c in A).

Usually, we will write

A =
〈
A; ∈A, 〈cA〉c∈C

〉
or A =

〈
A; ∈A, cA (c ∈ C)

〉
.

Simple examples show that a formula which has free variables may be true or false in a given
structure, depending on which elements of the structure the variables stand for. Therefore,
to determine the truth value of a given formula in a fixed structure A, we need to consider
functions a : ω → A that specify elements of (the universe of) A to be assigned to the
variables. If a is such a function, then for any i ∈ ω and b ∈ A we will use the notation aib
for the function ω → A defined by

aib(i) = b and aib(j) = a(j) for all j 6= i (j ∈ ω).

9

Definition 2.6. Let A be an LC-structure, and let a : ω → A. Furthermore, let ϕ be an
LC-formula. We define (by recursion) what it means that ϕ holds in A under the assignment
a (or, A models ϕ under a, or ϕ is satisfied by a in A); in symbols:

A |= ϕ [a].

Case 1: ϕ is atomic.

A |= s = t [a] iff sA = tA,

A |= s ∈ t [a] iff sA ∈A tA,
where sA denotes a(i) if s ≡ vi, and sA denotes cA if s ≡ c; similarly for t.

Case 2: ϕ ≡ ¬ψ for some formula ψ.

A |= ¬ψ [a] iff A 6|= ψ [a].

Case 3: ϕ ≡ (ψ → χ) for some formulas ψ and χ.

A |= (ψ → χ) [a] iff A 6|= ψ [a] or A |= χ [a].

Case 4: ϕ ≡ ∀vi ψ for some formula ψ and some variable vi.

A |= ∀vi ψ [a] iff A |= ψ [aib] for all b ∈ A.

Unique readability of formulas is crucial in order to see that this definition is correct, that
is, to see that, given A and a : ω → A, exactly one of A |= ϕ [a] and A 6|= ϕ [a] holds for
every formula ϕ.

It is not hard to deduce from Definition 2.6 that the fact whether or not A |= ϕ [a], depends
only on what elements of A are assigned by a to the free variables of ϕ. This claim can be
stated more precisely as follows.

Fact 2.7. Let A be an LC-structure, and let ϕ be an LC-formula. If a1, a2 : ω → A are two
assignments such that a1(i) = a2(i) holds whenever vi is a free variable of ϕ, then

A |= ϕ [a1] iff A |= ϕ [a2].

10

Corollary 2.8. Let A be an LC-structure. For every LC-sentence ϕ exactly one of the
following holds:

(†) A |= ϕ [a] for all a : ω → A;
(‡) A |= ϕ [a] for no a : ω → A.

In case (†) we say that the sentence ϕ is true in A, and write A |= ϕ. In case (‡) we say
that the sentence ϕ is false in A, and write A 6|= ϕ.

We can introduce the logical connectives ∨, ∧, ↔ the same way as in sentential logic, and
we can also introduce existential quantification ∃ (‘there exists’).

Definition 2.9. For arbitrary formulas ϕ and ψ and for any variable vi we define ϕ ∨ ψ,
ϕ ∧ ψ and ϕ↔ ψ as in Definition 1.6, and we define

∃vi ϕ :≡ ¬∀vi (¬ϕ).

As an easy consequence of Definitions 2.6 and 2.9 we get the fact below, which justifies
Definition 2.9.

Fact 2.10. Let A be an LC-structure, and let a : ω → A. Furthermore, let ϕ, ψ be LC-
formulas, and let vi be a variable. Then

A |= (ϕ ∨ ψ) [a] iff A |= ϕ [a] or A |= ψ [a],

A |= (ϕ ∧ ψ) [a] iff A |= ϕ [a] and A |= ψ [a],

A |= (ϕ↔ ψ) [a] iff
(
A |= ϕ [a] if and only if A |= ψ [a]

)
, and

A |= ∃vi ϕ [a] iff A |= ϕ [aib] for some b ∈ A.

11

Definition 2.11. Let Γ be a set of LC-formulas, and let ϕ be an LC-formula. We say that:

• Γ logically implies ϕ (or ϕ is a logical consequence of Γ), and write Γ |= ϕ, if for
every LC-structure and every assignment a : ω → A such that A |= γ [a] holds for
each γ ∈ Γ, we have that A |= ϕ [a].8

• ϕ is universally valid (or ϕ is a valid formula) if ∅ |= ϕ, that is, if A |= ϕ [a] for every
structure A and every assignment a : ω → A; notation: |= ϕ.
• ϕ is a tautology if there exist a sentential tautology τ and LC-formulas ψi (i ∈ ω)

such that ϕ is obtained from τ by replacing each sentential variable Si occurring in
τ by ψi.

Another easy consequence of Definition 2.6 is the following.

Fact 2.12. If an LC-formula is a tautology, then it is universally valid.

Next we define the concept of logical implication used in [1], which is different from
the one introduced in Definition 2.11. Unlike in [1], we will use the notation |=� for this
weaker/restricted notion of logical implication.

Definition 2.13. Let Γ be a set of LC-formulas, let ϕ be an LC-formula, and let A be an
LC-structure. We say that

• A is a model of ϕ if A |= ϕ [a] for every assignment a : ω → A.
• Γ |=� ϕ if for every structure A such that A is a model of every member of Γ, we have

that A is a model of ϕ.

8This is the definition of logical implication in

[2] A Mathematical Introduction to Logic by H. B. Enderton.

12

To clarify the relationship between |= and |=�, the following notation will be useful. If ϕ
is an LC-formula and the free variables of ϕ are vi0 , . . . , vik−1

with i0 < · · · < ik−1, then let

[[ϕ]] :≡ ∀vi0 . . . ∀vik−1
ϕ (the universal closure of ϕ).

Clearly, [[ϕ]] is a sentence.
If Γ is a set of formulas, let [[Γ]] denote the set of all sentences [[γ]] with γ ∈ Γ.

Facts 2.14. Let Γ be a set of LC-formulas and let ϕ be an LC-formula.

(i) If Γ |= ϕ, then Γ |=� ϕ.
(ii) We have that

Γ |=� ϕ iff [[Γ]] |= ϕ iff [[Γ]] |= [[ϕ]].

(iii) Consequently, Γ |= ϕ and Γ |=� ϕ are equivalent if Γ is a set of sentences. In partic-
ular, |= ϕ if and only if |=� ϕ.

Remark. For the proofs of Theorem 2.2, Fact 2.3, the correctness of Definition 2.6, Fact 2.7, Fact 2.10, and Fact 2.12

see Proposition 2.6, Proposition 3.9, Proposition 2.7, Lemma 4.4, Proposition 2.8, and Theorem 2.9 in [1].

3. Proof Systems

In every branch of mathematics, ‘theorems’ – i.e., logical consequences of the axioms of
the given subject – are established by ‘proofs’, rather than by using Definition 2.11 (or 2.13),
unless the ‘theorem’ is very simple. The advantage of a ‘proof’ is that it is a step-by-step
argument that may use all previously established ‘theorems’ in additions to the axioms, and
in every step of a proof it is easy to see that the reasoning is logically sound.

Now we will discuss a formal proof system for first-order logic (in the languages LC),
which can be viewed as the rigorous mathematical model of ‘proofs’, and can be studied
by mathematical techniques. The word “formal” refers to the fact that a proof system uses
formulas only, without reference to ‘meaning’ (structures, satisfaction, logical implication,
etc.).

13

Ideally, a proof system captures logical implication exactly, that is, a formula ϕ is ‘provable’
in the formal proof system from a set Γ of assumptions if and only if ϕ is a logical consequence
of Γ. It is a deep fact that such proof systems exist in first-order logic (see Theorems 3.4–3.5
and Theorems 3.8–3.9 below).

We have introduced two different notions of logical implication, |= and |=�, therefore we
will briefly discuss proof systems for each one separately.

A proof system for |= .9 The following notation will be useful: if ϕ is a formula, x is
a variable, and t is a variable or constant symbol, then Subf xt (ϕ) will denote the formula
obtained from ϕ by replacing every free occurrence of x by t.

Definition 3.1. The set Λ of logical axioms is the set of all LC-formulas of the form

∀vj0 . . . ∀vjl−1
λ (generalization of λ)

where λ is one of the following formulas:

(Ax1) a tautology (see Definition 2.11);
(Ax2) ∀xϕ → Subf xt (ϕ) where ϕ is a formula, x is a variable, and either t is a constant

symbol or t is a variable such that no quantifier ∀t in ϕ has a free occurrence of x in
its scope.

(Ax3) ∀x (ϕ→ ψ)→ (∀xϕ→ ∀xψ) where ϕ, ψ are arbitrary formulas and x is any variable;
(Ax4) ϕ→ ∀xϕ where ϕ is any formula and x is any variable that is not free in ϕ;
(Ax5) x = x where x is a variable;
(Ax6) x = y → (ϕ→ ϕ′) where ϕ is an atomic formula, x, y are variables, and ϕ′ is obtained

from ϕ by replacing zero or more (but not necessarily all) occurrences of x by y.

9This discussion follows Sections 2.4-2.5 of [2], but is restricted to the languages LC .

14

Definition 3.2. Let Γ be a set of formulas. A Γ-proof (or a deduction from Γ) is a finite
sequence 〈ϕ0, . . . , ϕm−1〉 of formulas such that for each i < m one of the following holds:

(P1) ϕi is a logical axiom or ϕi ∈ Γ;
(P2) there exist j, k < i such that ϕj ≡ (ϕk → ϕi).

If ϕi satisfies condition (P2), we say that ϕi is obtained from the formulas ϕk and ϕj ≡
(ϕk → ϕi) (which occur earlier in the proof) by modus ponens (abbreviated MP):

〈 . . . ϕk, . . . (ϕk → ϕi)︸ ︷︷ ︸
ϕj

, . . . ϕi, . . . 〉.

Modus ponens allows us to create (to ‘deduce’) a new entry in a proof using earlier entries;
therefore it is referred to as a rule of inference.

Definition 3.3. Let Γ be a set of formulas and ϕ another formula. We say that Γ proves ϕ
(or ϕ is provable from Γ, or ϕ is deducible from Γ, or ϕ is a theorem of Γ), and write Γ ` ϕ,
if ϕ appears as a member (equivalently: last member) of a Γ-proof.

By first showing that every formula in Λ is universally valid, one can use induction on the
lengths of proofs to get the following result.

Theorem 3.4. (Soundness Theorem) Let Γ be a set of formulas and ϕ another formula.
If Γ ` ϕ, then Γ |= ϕ.

The converse of this theorem is much deeper; it was proved by K. Gödel in 1929.10

Theorem 3.5. (Completeness Theorem) Let Γ be a set of formulas and ϕ another formula.
If Γ |= ϕ, then Γ ` ϕ.

10Gödel proved the version of the completeness theorem when Γ = ∅, for any countable language.

15

A proof system for |=� .11 We start again with the set of logical axioms.

Definition 3.6. The set Λ� of logical axioms is the set of all LC-formulas of one of the
following forms:

(�ax1) ϕ→ (ψ → ϕ),(
ϕ→ (ψ → χ)

)
→
(
(ϕ→ ψ)→ (ϕ→ χ)

)
,

(¬ϕ→ ¬ψ)→ (ψ → ϕ) where ϕ, ψ, χ are arbitrary formulas;
(�ax3) the same formulas as in (Ax3);
(�ax4) the same formulas as in (Ax4) so that x does not occur in ϕ at all;
(�ax6) s = t → (ϕ → ϕ′) where s and t is a variable or a constant symbol, ϕ is an atomic

formula involving s, and ϕ′ is obtained from ϕ by replacing one occurrence of s by t;
(�ax7) ∃x x = s where s is a constant symbol or a variable other than x.

The definition of a Γ-proof is similar to the earlier one; the only difference is that we will
now have an additional rule of inference.

Definition 3.7. With the same notation as in Definition 3.2, a Γ-proof is a finite sequence
〈ϕ0, . . . , ϕm−1〉 of formulas such that for each i < m one of the earlier conditions (P1), (P2),
or the new condition (P3) below holds:

(P3) there exists j < i and a variable x such that ϕi ≡ ∀xϕj.

If ϕi satisfies condition (P3), we say that ϕi is obtained from the formula ϕj (which occurs
earlier in the proof) by generalization.

The concept “Γ proves ϕ” for this proof system can be defined the same way as before
(see Definition 3.3), but we will use the notation Γ`� ϕ instead of Γ ` ϕ.

Both the Soundness and Completeness Theorems hold for |=� and `�:

Theorem 3.8. (Soundness Theorem) Let Γ be a set of formulas and ϕ another formula.
If Γ`� ϕ, then Γ |=� ϕ.

Theorem 3.9. (Completeness Theorem) Let Γ be a set of formulas and ϕ another formula.
If Γ |=� ϕ, then Γ`� ϕ.

11This discussion follows Sections 3–4 of [1], but is restricted to the languages LC .

16

Let’s compare the two proof systems.

• It is not hard to show that

(3) ` µ for every formula µ ∈ Λ�.

In fact, each set (�ax1), (�ax3), (�ax4) of axioms in Λ� is a subset of the corre-
sponding set (Ax1), (Ax3), (Ax4) in Λ, the set (�ax6) is just slightly different from
(Ax6), and for the axioms µ in (�ax7), a short ∅-proof verifies ` µ.
• The proof of the analogous fact with the roles reversed, namely that

(4) `� λ for every formula λ ∈ Λ,

is much more involved. Since `� allows the use of the rule of inference ‘generalization’,
it suffices to establish (4) for the formulas λ in (Ax1)–(Ax6).

– For λ in (Ax1), (4) follows by showing that every tautology has an ∅-proof that
uses only the axioms in (�ax1); in other words, the set of sentential formulas
of the form indicated in (�ax1) is a set of logical axioms for a proof system for
sentential logic.12

– For λ in (Ax2), (4) is proved in [1] in several stages13 which, when combined
together, provide an explicit ∅-proof establishing `� λ.

– Even for the simple formulas λ in (Ax5), a nontrivial ∅-proof is needed to verify
(4).14

• These facts indicate that it is possible to prove (without relying on the Sound-
ness/Completeness Theorems) that the two sets of logical axioms have the same
strength. The main difference in strength between the two proof systems lies in the
rules of inferences allowed in Γ-proofs, namely that the proof system `� allows an
unrestricted use of ‘generalization’.

12See pp. 6–11 in [1].
13See pp. 34–36 in [1].
14See Proposition 3.4 in [1]

17

Metatheorems. Metatheorems are theorems (stated in a natural language) about Γ-proofs
and Γ-theorems (i.e., proofs and theorems in a formal language). We are interested in the
metatheorems which express (within first-order logic) that certain methods of proof used in
mathematical practice are ‘correct’. We will restrict the discussion to the proof system `.

Definition 3.10. We say that a set Γ of formulas is inconsistent if Γ ` β and Γ ` ¬β both
hold for some formula β.

It is easy to see that if Γ is inconsistent, then Γ ` χ for every formula χ.

Metatheorems 3.11. Let Γ, ∆ be sets of LC-formulas and ϕ, ψ be further LC-formulas.

(i) If Γ′ ⊆ Γ and Γ′ ` ϕ, then Γ ` ϕ.
(ii) If Γ ∪∆ ` ϕ and Γ ` δ for every δ ∈ ∆, then Γ ` ϕ.

(iii) (Deduction Theorem)
If Γ ∪ {ϕ} ` ψ, then Γ ` ϕ→ ψ.
(Note: The converse is easily seen to be true by MP.)

(iv) (Generalization Theorem)
If Γ ` ϕ and x is a variable which is not free in any γ ∈ Γ, then Γ ` ∀xϕ.
(Note: The converse is true by the logical axiom ∀xϕ→ ϕ in (Ax2) and MP.)

(v) (Proof by Contraposition)
Γ ∪ {ϕ} ` ¬ψ if and only if Γ ∪ {ψ} ` ¬ϕ.

(vi) (Reductio ad Absurdum or Proof by Contradiction)
Γ ∪ {¬ϕ} is inconsistent if and only if Γ ` ϕ.

(vii) (Generalization on Constants) Let d be a constant symbol not in C.
If Γ ` Subf xd(ϕ) (in LC∪{d}), then Γ ` ∀xϕ (in LC).
(Again, the converse is true by the axiom ∀xϕ→ Subf xd(ϕ) in (Ax2) and MP.)

(viii) (Existential Instantiation) Let d be a constant symbol not in C.
If Γ ∪ {Subf xd(ϕ)} ` ψ (in LC∪{d}), then Γ ∪ {∃xϕ} ` ψ (in LC).
(The converse is also true, because by Contraposition, this metatheorem reduces to
one of the form (vii).)

18

We conclude by two statements on bound variables, which confirm that — with some
reasonable restrictions — the choice of bound variables in formulas is irrelevant. The proofs
are not hard if one uses some of the metatheorems above (and induction on formulas).

Corollary 3.12. For any LC-formula ϕ and any variables x, y such that y does not occur
in ϕ, we have that

Subf yx
(
Subf xy(ϕ)

)
≡ ϕ,

and the two formulas ∀xϕ and ∀y Subf xy(ϕ) are ‘provably equivalent’, that is,

∀xϕ ` ∀y Subf xy(ϕ) and ∀y Subf xy(ϕ) ` ∀xϕ.

Corollary 3.13. Let χ be an LC-formula, let ∀xϕ be a subformula of χ, and let y be a
variable not occurring in ϕ. If χ′ is obtained from χ by replacing one or more occurrences
of the subformula ∀xϕ by ∀y Subf xy(ϕ), then χ ` χ′ and χ′ ` χ.

Remark. The proof system for |= discussed above, along with the proofs of the Soundness and Completeness

Theorems, Theorems 3.4–3.5, can be found in Sections 2.4–2.5 of [2]. The proof system for |=� and the proofs

of the Soundness and Completeness Theorems, Theorems 3.8–3.9, can be found in Sections 3–4 of [1]. For the

Metatheorems 3.11(iii)–(viii), see Section 2.4 of [2]. The Metaheorems 3.11(i)–(ii) are straightforward to prove.

