
Set Theory (MATH 6730)

Ordinals. Transfinite Induction and Recursion

We will not use the Axiom of Choice in this chapter. All theorems we prove will be theorems
of ZF = ZFC \ {AC}.

1. Ordinals

To motivate ordinals, recall from elementary (naive) set theory that natural numbers can be
used to label elements of a finite set to indicate a linear ordering:

0th, 1st, 2nd, . . ., 2019th element.

Although this will not be immediately clear from the definition, ‘ordinal numbers’ or ‘ordi-
nals’ are sets which are introduced to play the same role for special linear orderings, called
‘well-orderings’, of arbitrary sets. For example, one such ordering might be the following:

0th, 1st, 2nd, . . ., 2019th, . . .︸ ︷︷ ︸
we have run out of all natural numbers

, ωth, (ω + 1)st element.

Definition 1.1. A set s is called transitive, if every element of s is a subset of s; i.e., for
any sets x, y such that x ∈ y ∈ s we have that x ∈ s. Thus, the class of all transitive sets is
defined by the formula

tr(s) ≡ ∀x ∀y
(
(x ∈ y ∧ y ∈ s)→ x ∈ s

)
.

Definition 1.2. A transitive set of transitive sets is called an ordinal number or ordinal.
Thus, the class On of all ordinals is defined by the formula

on(x) ≡ tr(x) ∧ ∀y ∈ x tr(y).

Ordinals will usually be denoted by the first few letters of the Greek alphabet.

The following facts are easy consequences of the definition of ordinals.
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Theorem 1.3.

(i) ∅ ∈ On.

(ii) If α ∈ On, then α ∪ {α} ∈ On.

(iii) If α ∈ On then α ⊆ On; i.e., every member of an ordinal is an ordinal.

(iv) If A is a set of ordinals, then
⋃
A ∈ On.

(v) If A is a nonempty set of ordinals, then
⋂
A ∈ On.

Theorem 1.3(iii) shows that if On was a set, it would be an ordinal, and hence we would
get On ∈ On, which is impossible. This proves:

Corollary 1.4. On is not a set.

Definition 1.5. Let A be an ordinal or On, and define the class relations <A and ≤A on
A by the formulas

x <A y ≡ x ∈ A ∧ y ∈ A ∧ x ∈ y and

x ≤A y ≡ x ∈ A ∧ y ∈ A ∧ (x ∈ y ∨ x = y).

The subscript A will be omitted if A is clear from the context.
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Theorem 1.6.

(i) If A is an ordinal or A = On, then < is a (strict) linear order on A; that is,

ZF ` ∀x ∈ A¬x < x︸ ︷︷ ︸
< is irreflexive

∧ ∀x ∈ A ∀y ∈ A ∀z ∈ A
(
(x < y ∧ y < z)→ x < z

)︸ ︷︷ ︸
< is transitive

∧ ∀x ∈ A ∀y ∈ A (x = y ∨ x < y ∨ y < x)︸ ︷︷ ︸
the trichotomy law holds for <

.

(ii) For arbitrary ordinals α and β we have that
• α ≤ β if and only if α ⊆ β, and
• α < β if and only if α ( β.

(iii) For any set A of ordinals,
⋃
A is the least upper bound for A with respect to ≤; that

is, the ordinal
⋃
A satisfies

• α ≤
⋃
A for all α ∈ A, and

• for every ordinal γ such that α ≤ γ for all α ∈ A, we have that
⋃
A ≤ γ.

(iv) For any nonempty set A of ordinals,
⋂
A is the least element of A with respect to ≤;

that is, the ordinal
⋂
A satisfies

•
⋂
A ∈ A, and

•
⋂
A ≤ α for all α ∈ A.

(v) There do not exist ordinals α, β such that α < β < α ∪ {α}.
(vi) For arbitrary ordinals α and β we have that

• α < β if and only if α ∪ {α} ≤ β.

Idea of Proof. All statements in (i)–(vi), except the trichotomy of < in (i), are fairly straight-
forward consequences of the definition of ordinals and properties of ordinals proved in The-
orem 1.3 or earlier items of this theorem.
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We prove the trichotomy law for < on A by contradiction. So, assume that the trichotomy
law fails for < on A, and choose α, β ∈ A such that τ(α, β), where τ(x, y) is the formula

τ(x, y) ≡ ¬x = y ∧ ¬x ∈ y ∧ ¬ y ∈ x.
Prove the following claims:

1. The set A = (α ∪ {α}) ∪ (β ∪ {β}) is an ordinal.
2. The set C = {x ∈ A : ∃y ∈ A τ(x, y)} has an element γ such that γ ∩ C = ∅.

Fix such a γ.

3. The set D = {y ∈ A : τ(γ, y)} has an element δ such that δ ∩D = ∅.
Fix such a δ, and note that we have τ(γ, δ) by construction, so

(∗) γ 6= δ, γ /∈ δ, and δ /∈ γ.
4. Now prove γ = δ by arguing that every element of γ is an element of δ, and every

element of δ is an element of γ.

We have reached the desired contradiction, which proves the trichotomy of < on A. �
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The statement in Theorem 1.6(v) motivates the following terminology: for every ordinal
α, we call the ordinal α ∪ {α} the successor of α, and denote it by α +′ 1.1

By combining statements (i) and (iv) of Theorem 1.6 we get that for every ordinal α, the
relation < is a linear order on α such that every nonempty subset of α has a least element.
Such a linear order is called a well-order.

Since ∅ ⊆ x for every set, we see from Theorem 1.6(ii) that ∅ is the least ordinal; therefore
we will also denote it by 0 (zero). The successor of 0 is the set ∅ ∪ {∅} = {∅}, which will
be denoted by 1, and the successor of 1, which is the set {∅} ∪ {{∅}} = {∅, {∅}}, will be
denoted by 2, etc.

Definition 1.7. Let α ∈ On. We will call α a successor ordinal if α = β +′ 1 = β ∪ {β} for
some ordinal β, and we will call α a limit ordinal if α 6= 0 and α is not a successor ordinal.

Theorem 1.8. Let α ∈ On.

(i) The following conditions on α are equivalent:
(a) α is a limit ordinal;
(b) α 6= 0 and for every ordinal β < α there exists an ordinal γ such that β < γ < α;
(c) 0 6= α =

⋃
α.

(ii) If α is a successor ordinal and α = β +′ 1, then
⋃
α = β.

1After introducing addition for ordinals, the ordinal α +′ 1 = α ∪ {α} will turn out to be the sum of α

and 1 where 1 is the successor of 0
def
= ∅.
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By construction, 1, 2, etc. are successor ordinals. Now we will use the Axiom of Infinity
to show that there exists a limit ordinal. Let us call a set u inductive if it is a member of
the class defined by the (abbreviated) formula

ι(u) ≡ ∅ ∈ u ∧ ∀x ∈ ux ∪ {x} ∈ u.
The Axiom of Infinity is the statement that there exists an inductive set u. Let

ω =
⋂
{v ∈ P(u) : v is inductive} = {x ∈ u : ∀v (ι(v)→ x ∈ v)}.

To justify the second equality notice that ⊇ is clear, while ⊆ holds, because if w is an
inductive set, so is w ∩ u ∈ P(u). Thus,

• ω is a set (by Comprehension);
• ω is inductive (as the intersection of any nonempty set of inductive sets is inductive);

and
• ω is a subset of all inductive sets.

This shows that ω is the least inductive set with respect to ⊆; hence it is independent of the
choice of u.

Definition 1.9. The elements of ω are called natural numbers, so ω is the set of all natural
numbers.

The fact that ω has no proper subset that is inductive, is the Induction Principle for ω:

Theorem 1.10. For every subset A of ω, if

• 0 ∈ A, and
• whenever y ∈ A then y +′ 1 = y ∪ {y} ∈ A,

then A = ω.

We can use induction on ω to prove the following properties of ω:

Theorem 1.11. ω is a limit ordinal. In fact, ω is the smallest limit ordinal with respect to
<; that is, every ordinal β < ω is either 0 or a successor ordinal.
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2. Well-founded and Set-like Class Relations

Our goal is to extend

• the Induction Principle for ω, and
• the familiar idea of constructing infinite sequences (i.e., functions with domain ω) by

recursion

to all ordinals. It turns out that induction and recursion work — and are useful — in a
much broader context, which we will discuss now.

Let R be a class relation, and let A be a class; let R be defined by the formula ϕ(x, y),
and let A be defined by the formula ψ(x).

Definition 2.1. We say that R is well-founded on A if R ⊆ A×A and for every nonempty
subset X of A there exists an element x ∈ X such that there is no y ∈ X satisfying
(y, x) ∈ R. Such an element x ∈ X is called an R-minimal element of X. (It is useful to
think of (u, v) ∈ R as saying that “u R-precedes v” or “u is R-smaller than v”, although R
need not be an order or partial order.)

There is a formula saying that “R is well-founded on A”, namely:

(1) ∀x ∀y
(
ϕ(x, y)→ (ψ(x) ∧ ψ(y))

)
∧ ∀X

(
(X 6= ∅ ∧ ∀x ∈ X ψ(x))→ ∃x ∈ X ∀y ∈ X ¬ϕ(y, x)

)
.

Example 2.2. The class relation R∈ = {(x, y) : x ∈ y} is well-founded on V. This is
exactly what the Axiom of Foundation says: for every nonempty set X there exists x ∈ X
such that

no y ∈ X satisfies y ∈ x,

which is equivalent to x ∩X = ∅.

Example 2.3. The class relation < on On is well-founded on On. This is exactly the
property needed to make the linear order < on On a well-order. (The trichotomy law for <
implies that for any subset X of On and x ∈ X, the conditions “x is an <-minimal element
of X” and “x is a least element of X” are equivalent.)
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Definition 2.4. We say that R is set-like on A if R ⊆ A × A and for every x ∈ A, the
class

predA,R(x) = {y ∈ A : (y, x) ∈ R}
is a set.

Again, there is a formula saying that “R is set-like on A”, namely:

(2) ∀x∀y
(
ϕ(x, y)→ (ψ(x) ∧ ψ(y))

)
∧ ∀x

(
ψ(x)→ ∃z ∀y (y ∈ z ↔ ϕ(y, x))

)
.

Example 2.2 (continued). The class relation R∈ = {(x, y) : x ∈ y} is set-like on V, because
predV,R∈(x) = x for every x ∈ V.

Example 2.3 (continued). The class relation < on On is set-like on On for the same reason:
predOn,<(x) = {y ∈ On : y < x} = {y ∈ On : y ∈ x} = x for every x ∈ On.

Our goal is to prove a general recursion theorem, which describes how to ‘construct’ class
functions defined on a class A by recursion, using a class relation R that is well-founded and
set-like on A.

For the proof we will need some properties of well-founded, set-like class relations, which
we will discuss now. As before, R denotes an arbitrary class relation (defined by ϕ(x, y))
and A an arbitrary class (defined by ψ(x)).

Definition 2.5. The transitive closure of R is the class relation R∗ defined by the formula2

ϕ∗(x, y) ≡ ∃n ∈ ω\1 ∃f
(
f = 〈f0, . . . , fn〉 is a function with domain n+′ 1

∧ f0 = y ∧ fn = x ∧ ∀i < n ϕ(fi+′1, fi)
)

≡ ∃n ∈ ω\1 Φ(x, y, n).

We will not need that R∗ is transitive; a somewhat weaker transitivity property of R∗ (see
2.6(ii)) will be sufficient. We will use the following notation: for any x ∈ A, let

pred′A,R(x) = predA,R(x) ∪ {x}.

2This formula contains some abbreviations. For example, for any formula Φ, ∃n ∈ ω\1 Φ is an abbreviation
for ∃n (n 6= ∅ ∧ ∀u (ι(u)→ n ∈ u) ∧ Φ), where ι(u) is the formula for “u is inductive”.
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Theorem 2.6. Let R be a class relation, and let A be a class.

(i) R ⊆ R∗.
(ii) If R ⊆ A×A and x ∈ A, then for every pair (u, v) ∈ R such that v ∈ pred′A,R∗(x)

we have that u ∈ pred′A,R∗(x).
(iii) If R is set-like on A, then so is R∗.
(iv) If R is well-founded and set-like on A, then every nonempty subclass of A has an

R-minimal element.

Idea of Proof of (iii). Fix x ∈ A. We want to show that predA,R∗(x) is a set. For each
n ∈ ω \ 1, consider the class

Dn = {y ∈ A : Φ(y, x, n)}.
1. Use the Induction Principle for ω to show that Dn is a set for all n ∈ ω \ 1:

� D1 = predA,R(x).
� Dn+′1 = {y ∈ A : ∃z ∈ Dn y ∈ predA,R(z)}.
� Use the axiom of replacement to prove that if Dn is a set, then so is Dn+′1,

namely, Dn+′1 =
⋃
{predA,R(z) : z ∈ Dn}.

2. Use replacement again to show that predA,R∗(x) =
⋃
{Dn : n ∈ ω \ 1} is a set. �

We need one more fact before stating our general recursion theorem. Let F be a class
relation defined by a formula θ(x, y). Recall that saying that F is a class function on A
means that

ZFC ` ∀x
(
ψ(x)→ ∃!y θ(x, y)

)
.

If this is the case, then for every subset S of A the formula x ∈ S ∧ θ(x, y) defines a class
function with domain S, which will be denoted by F�S. By replacement, the range of this
function is also a set, so by comprehension, the function

F�S = {(x, y) ∈ S × rng(F�S) : θ(x, y)}
itself is a set.
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Recursion Theorem 2.7. Let A be a class, let R be a class relation that is well-founded
and set-like on A, and let G be a class function A×V→ V.

(E) There exists a class function F : A→ V such that

(3) F(a) = G
(
a,F�predA,R(a)

)
for all a ∈ A.

(U) This class function is unique; that is, if F and F′ are class functions A → V such
that (3) holds for F and the same condition with F replaced by F′ holds for F′, then
F = F′.

To discuss the rigorous version of the Recursion Theorem, let R and A be defined by the
formulas ϕ(x, y) and ψ(x) as before, and let G be defined by the formula χ(x, y, z). Our
assumptions on R are described by the formulas (1) and (2), while our assumption on G is
that ZFC proves

(4) ∀x ∀y ∀z
(
χ(x, y, z)→ ψ(x)

)
∧ ∀x ∀y

(
ψ(x)→ ∃!z χ(x, y, z)

)
.

The statement in (3) is expressed by the sentence ρθ below, if θ is the formula that defines
the class function F on A:

ρθ ≡ ∀x ∀y
(
θ(x, y)→ ψ(x)

)
∧ ∀x

(
ψ(x)→ ∃!y θ(x, y)

)
∧ ∀x

(
ψ(x)→ ∃y

(
θ(x, y) ∧ ∃f

(
f is a function

∧ ∀u∀v
(
(u, v) ∈ f ↔ (ϕ(u, x) ∧ θ(u, v))

)
∧ χ(x, f, y)

)))
.

Thus, statement (E) of the Recursion Theorem asserts that there exists a formula θ(x, y)
(involving ϕ, ψ, and χ) such that

ZF ` [(1), (2), and (4)]→ ρθ.

The proof will yield such a formula θ(x, y). The conclusion of part (U) of the Recursion
Theorem is that for any other formula θ′(x, y),

ZF ` [(1), (2), and (4)]→
(

(ρθ ∧ ρθ′)→ ∀x ∀y
(
θ(x, y) ↔ θ′(x, y)

))
.
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Proof of the Recursion Theorem. (U) To prove the uniqueness statement, assume F : A→ V
and F′ : A→ V satisfy

F(a) = G
(
a,F�predA,R(a)

)
and F′(a) = G

(
a,F′�predA,R(a)

)
for all a ∈ A,

but F 6= F′. Then
X = {x ∈ A : F(x) 6= F′(x)}

is a nonempty subclass of A, so by Theorem 2.6(iv), X has an R-minimal element a. Hence,
F(b) = F′(b) for all b ∈ A with (b, a) ∈ R, i.e., F�predA,R(a) = F′�predA,R(a). It follows
that

F(a) = G
(
a,F�predA,R(a)

)
= G

(
a,F′�predA,R(a)

)
= F′(a),

which contradicts a ∈ X.
(E) Informally, the idea of the proof of the existence of F is the following: we show that

there is a ‘consistent’ family (class!) of ‘approximations’ to F whose ‘union’ is F.
More precisely, by an approximation to F we mean a (set) function f such that dmn(f) ⊆

A, and for every a ∈ dmn(f) we have

predA,R(a) ⊆ dmn(f) and f(a) = G(a, f�predA,R(a)).

Formally, the class of all approximations f to F is defined by the following formula:

(5) µ(f) ≡ f is a function ∧ ∀x
(
x ∈ dmn(f)→ ψ(x)

)
∧

∀a
(
a ∈ dmn(f)→ ∃g

(
g is a function ∧ ∀y

(
y ∈ dmn(g) ↔ ϕ(y, a)

)
∧ ∀y ∈ dmn(g)

(
y ∈ dmn(f) ∧ g(y) = f(y)

)
∧ χ(a, g, f(a))

))
.

The class of all approximations to F has the following ‘consistency’ property:

Claim 2.8. If f, f ′ are approximations to F and a ∈ dmn(f) ∩ dmn(f ′), then f(a) = f ′(a).

This implies that ‘the union of the approximations to F’, that is, the class relation defined
by the formula

θ(x, y) ≡ ∃f
(
µ(f) ∧ x ∈ dmn(f) ∧ f(x) = y

)
,

is a class function F : A′ → V on some subclass A′ of A, namely, on ‘the union of the
domains of all approximations to F’. Clearly, A′ is defined by the formula

ψ′(x) ≡ ∃f
(
µ(f) ∧ x ∈ dmn(f)

)
.
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Next we show that A′ = A, or equivalently, that every x ∈ A is in the domain of some
approximation to F. This is done in the following three steps:

Claim 2.9. If f is an approximation to F and x ∈ dmn(f), then pred′A,R∗(x) ⊆ dmn(f).

Claim 2.10. If f is an approximation to F and x ∈ dmn(f), then f�pred′A,R∗(x) is an
approximation to F.

Claim 2.11. For each x ∈ A there exists an approximation f to F such that x ∈ dmn(f).

Idea of Proof of Claim 2.11. Assume not. Then the class

X = {z ∈ A : z /∈ dmn(f) holds for all approximations f to F}
is nonempty, so by Theorem 2.6(iv), X has an R-minimal element x. Let us fix such an x.

1. For every y ∈ predA,R(x),
� there exists an approximation f to F such that y ∈ dmn(f), and

� f̂y = f�pred′A,R∗(y) is the unique approximation to F with domain pred′A,R∗(y).

2. Consider the class A = {f̂y : y ∈ predA,R(x)} (it is indeed a class!). Then
� A is a set, and
� g =

⋃
A is a function with domain

dmn(g) =
⋃
{pred′A,R∗(y) : y ∈ predA,R(x)}(⊆ A).

3. g is an approximation to F; i.e., for every a ∈ dmn(g),
� predA,R(a) ⊆ dmn(g), and

� g(a) = G
(
a, g�predA,R(a)

)
.

4. h = g ∪
{(
x,G(x, g�predA,R(x))

)}
is an approximation to F. Indeed,

� h is a function, and x ∈ dmn(h) ⊆ A;
� predA,R(a) ⊆ dmn(h) for all a ∈ dmn(h), and

� h(a) = G
(
a, h�predA,R(a)

)
for all a ∈ dmn(h).

The fact that h is an approximation to F with x ∈ dmn(h), contradicts the choice of x. �
Thus, F is a class function A → V. We will now check that F also satisfies (3). Let

a ∈ A. By Claim 2.11, there is an approximation f to F such that a ∈ dmn(f). It follows
from the definition of an approximation that predA,R(a) ⊆ dmn(f), hence Claim 2.8 and
the definition of F imply that F�predA,R(a) = f�predA,R(a). Therefore,

F(a) = f(a) = G
(
a, f�predA,R(a)

)
= G

(
a,F�predA,R(a)

)
.

Since F is defined by the formula θ(x, y), our proof above shows that θ(x, y) is indeed the
formula we asserted to exist in part (E) of the Recursion Theorem.

The proof of the Recursion Theorem is complete. �
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3. Transfinite Induction and Recursion

The transfinite induction principles for ordinals and for On follow from the following
special case of Theorem 2.6(iv):

Corollary 3.1. If A is an ordinal or A = On, then every nonempty subclass of A has a
least element (with respect to <).

3.2 and 3.3 below state two forms of the induction principle on ordinals or on On.

Transfinite Induction Theorem 3.2. Let A be an ordinal or On. For every subclass B
of A, if

• for all α ∈ A such that α ⊆ B we have α ∈ B,

then B = A.

In particular, for the cases A = β (∈ On) and A = On, this means the following:

(�) For every subset X ⊆ β, if
• for all α < β such that α ⊆ X we have α ∈ X,

then X = β.
(��) For every class B of ordinals, if

• for all ordinals α such that α ⊆ B we have α ∈ B,
then B = On.

Transfinite Induction Theorem 3.3. Let A be an ordinal or On. For every subclass B
of A, if

• 0 ∈ B,
• for all successor ordinals α +′ 1 ∈ A such that α ∈ B we have α +′ 1 ∈ B, and
• for all limit ordinals α ∈ A such that α ⊆ B we have α ∈ B,

then B = A.

As before, it is easy to specialize the theorem for the cases when A = β (∈ On) or A = On.
The Transfinite Recursion Theorem below is an immediate consequence of the Recursion

Theorem (2.7):

Transfinite Recursion Theorem 3.4. Let A be an ordinal or On. For every class function
G : A×V→ V there exists a unique class function F : A→ V such that

F(α) = G(α,F�α) for all α ∈ A.



14

4. Well-Orders

Definition 4.1. A partial order (or partially ordered set) is a pair (P,<) such that P is a
set, < ⊆ P × P , and < is irreflexive and transitive. A partial order (P,<) satisfying the
trichotomy law is called a linear order (or linearly ordered set). A linear order (P,<) such
that < is well-founded on P is called a well-order (or well-ordered set).

Recall that “< is well-founded on P” means: for every nonempty X ⊆ P there exists
x ∈ X such that x is <-minimal in X (i.e., y 6< x for all y ∈ X). By trichotomy, such an
element x ∈ X is the <-least element of X (i.e., y ≥ x for all y ∈ X).

Example 4.2. (α,<) is a well-order for every ordinal α.

Definition 4.3. Let (A,<) and (B,≺) be partial orders, and let f : A → B be a function.
We say that f is strictly increasing (or strict order preserving) if for all a1, a2 ∈ A with
a1 < a2 we have f(a1) ≺ f(a2). We say that f is an isomorphism from (A,<) onto (B,≺)
(or an isomorphism between (A,<) and (B,≺)) if f is one-to-one, rng(f) = B, and for all
a1, a2 ∈ A we have a1 < a2 if and only if f(a1) ≺ f(a2). We call two partial orders isomorphic
if there is an isomorphism between them.

The main result we want to prove is the following theorem.

Theorem 4.4. For every well-order (B,≺) there exists a unique ordinal α such that (α,<)
is isomorphic to (B,≺). Moreover, there is a unique isomorphism from (α,<) onto (B,≺).

Proof. Let (B,≺) be a well-order. The theorem is clearly true if B = ∅, therefore we will
assume throughout the proof that B is nonempty.

To prove the existence of an ordinal α such that (α,<) is isomorphic to (B,≺) we define
a class function G : On×V→ V as follows: for any γ ∈ On and x ∈ V, let

G(γ, x) =

{
the ≺-least element of B \ rng(x) if x is a function and B \ rng(x) 6= ∅,
B otherwise.

Note that, since B /∈ B, the equality G(γ, x) = B for a function x implies that B\rng(x) = ∅.
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By the Transfinite Recursion Theorem there exists a class function F : On→ V such that

F(β) = G(β,F�β) for all β ∈ On.

The proof proceeds by showing that F has the following properties:

1. For β < γ in On,
• if F(β) = B, then F(γ) = B; and
• if F(γ) 6= B — and hence F(β) 6= B —, then F(β) ≺ F(γ).

2. There exists γ ∈ On such that F(γ) = B.
3. For the least ordinal α such that F(α) = B, the function F�α maps α onto B.

By properties 1 and 3, F�α is strict order preserving from (α,<) onto (B,≺). As the
following easy, but useful, claim shows, this is enough to conclude that F�α is, in fact, an
isomorphism from (α,<) onto (B,≺).

Claim 4.5. If (A,<) and (B,≺) are linear orders, and f : A→ B is strict order preserving,
then for all a1, a2 ∈ A we have a1 < a2 if and only if f(a1) ≺ f(a2).

The proof of the uniqueness of α and the isomorphism between (α,<) and (B,≺) follow
from Claims 4.7 and 4.8 below, both of which rely on the following easy, but useful fact.

Claim 4.6. If (A,<) is a well-order and f : A→ A is strict order preserving, then x ≤ f(x)
for all x ∈ A.

Claim 4.7. If α and β are different ordinals, then (α,<) and (β,<) are not isomorphic.

Claim 4.8. If (A,<) and (B,≺) are isomorphic well-orders, then there is a unique isomor-
phism from (A,<) onto (B,≺).

�
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5. Ordinal Class Functions and Ordinal Arithmetic

Definition 5.1. By an ordinal class function we mean a class function F ⊆ On×On whose
domain is either an ordinal or the class On. We say that an ordinal class function F with
domain A is

• strictly increasing (or strict order preserving) if for all α, β ∈ A with α < β we have
F(α) < F(β);
• continuous if for every limit ordinal α ∈ A we have F(α) =

⋃
β<α F(β);

• normal if it is continuous and strict order preserving.

Some basic properties of ordinal class functions satisfying some of these properties are
summarized in the following theorem. The first statement of the theorem is the analog of
Claim 4.6 for ordinal class functions.

Theorem 5.2. Let F be an ordinal class function with domain A, and let G be an ordinal
class function with domain B.

(i) If F is strict order preserving, then α ≤ F(α) for all α ∈ A.
(ii) If F is continuous and for every successor ordinal α +′ 1 ∈ A we have F(α) <

F(α +′ 1), then F is strict order preserving (hence normal).
(iii) If F is normal, then F(α) is a limit ordinal for every limit ordinal α ∈ A.
(iv) If F and G are normal and the range of F is contained in B, then G ◦F is normal.

The general Recursion Theorem 2.7 is used to define addition, multiplication, and expo-
nentiation for ordinals.
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Theorem 5.3. There exists a unique class function +: On × On → On such that the
following conditions hold for any α, β ∈ On:

• α + 0 = α;
• α + β = (α + γ) +′ 1 if β = γ +′ 1 is a successor ordinal;
• α + β =

⋃
γ<β(α + γ) if β is a limit ordinal.

Idea of Proof. For the existence of +, let A = On×On and

R =
{(

(α, β), (α, γ)
)

: α, β, γ ∈ On with β < γ
}
.

It is easy to see that R is well-founded and set-like on A. Now let G : A ×V → V be the
class function defined for any (α, β) ∈ A (= On×On) and x ∈ V by

G
(
(α, β), x

)
=



α if β = 0,

x(α, γ) ∪ {x(α, γ)} if β = γ +′ 1 is a successor ordinal

and x is a function with domain {α} × β,⋃
γ<β x(α, γ) if β is a limit ordinal

and x is a function with domain {α} × β,
∅ otherwise.

By the Recursion Theorem there exists a unique class function F : A→ V such that

F(α, β) = G
(
(α, β),F�predA,R((α, β))

)
= G

(
(α, β),F�({α} × β)

)
for all α, β ∈ On.

Denoting F(α, β) by α + β we get that + has the stated properties.
For each α ∈ On, the uniqueness of the class function α + : On → On satisfying the

conditions listed in the theorem follows by transfinite induction (say, by 3.3). This proves
the uniqueness of +. �

Notice that,
α +′ 1 = α + 1 for all α ∈ On,

because 1 is the successor of 0, i.e., 1 = 0 +′ 1, and hence by the properties of + we have
that α + 1 = α + (0 +′ 1) = (α + 0) +′ 1 = α +′ 1. Therefore, from now on, we will write
α + 1 for the successor of an ordinal α.
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The basic properties of ordinal addition are summarized in the next theorem.

Theorem 5.4. The following hold for arbitrary ordinals α, β, γ:

(i) If α, β ∈ ω, then α + β ∈ ω.
(ii) The ordinal class function Fα+ : On→ On, δ 7→ α + δ has the following properties:

(ii)1 Fα+ is normal;
(ii)2 Fα+ is one-to-one and maps onto On \ α = {β ∈ On : α ≤ β};
(ii)3 we have δ ≤ Fα+(δ) = α + δ for all δ ∈ On.

(iii) 0 + α = α.
(iv) (α + β) + γ = α + (β + γ).
(v) If β ≤ γ then β + α ≤ γ + α.

(I.e., the ordinal class function F+α : On→ On, δ 7→ δ + α is ‘weakly increasing’ or
‘(weak) order preserving’.)

Idea of Proof. (i) Fix α and use the induction theorem for ω (Theorem 1.10).
(ii): For (ii)1 use the defining properties of + and Theorem 5.2(ii). This implies, in

particular, that Fα+ is one-to-one. The remaining statement in (ii)2 is equivalent to saying
that for any ordinals α and β we have α ≤ β if and only if α+ δ = β for some δ ∈ On. This
can be proved by transfinite induction, fixing α. (Induct on β in the forward direction, and
on δ in the backward direction.) (ii)3 follows from (ii)1, using Theorem 5.2(i).

(iii) Use transfinite induction on α.
(iv) Fix α, β, and apply transfinite induction on γ, using the class functions Fα+, Fβ+,

F(α+β)+ from (ii) and their compositions (cf. Theorem 5.2(iv)).
(v) Fix β, γ, and use transfinite induction on α. (Alternatively: Use (ii)2 to conclude that

γ = β + ε for some ε ∈ On, and combine results from (ii) and (iv).) �

Note that ordinal addition is not commutative. For example, ω + 1 > ω, because ω + 1
is the successor of ω, while 1 + ω = ω, because by the defining properties of + we have
1 + ω =

⋃
n<ω(1 + n) = ω.

Essentially the same example also shows that the ordinal class function F+α from Theo-
rem 5.4(v) is not continuous, e.g., for α = 1. Indeed, F+1(ω) = ω + 1, while

⋃
n<ω F+1(n) =⋃

n<ω(n+ 1) = ω.
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Similarly to ordinal addition, ordinal multiplication is defined by recursion, as the unique
class function described in the next theorem.

Theorem 5.5. There exists a unique class function · : On × On → On such that the fol-
lowing conditions hold for any α, β ∈ On:

• α · 0 = 0;
• α · β = α · γ + α if β = γ + 1 is a successor ordinal;
• α · β =

⋃
γ<β(α · γ) if β is a limit ordinal.

Some basic properties of ordinal multiplication are summarized in the next two theorems.

Theorem 5.6. The following hold for arbitrary ordinals α, β, γ:

(i) If α, β ∈ ω, then α · β ∈ ω.
(ii) The ordinal class function Fα· : On→ On, δ 7→ α · δ has the following properties:

(ii)1 Fα· is normal if α 6= 0;
(ii)2 Fα·(1) = α · 1 = α and Fα·(2) = α · 2 = α + α;
(ii)3 α · (β + γ) = Fα·(β + γ) = Fα·(β) + Fα·(γ) = α · β + α · γ;
(ii)4 if α 6= 0, then δ ≤ Fα·(δ) = α · δ for all δ ∈ On.

(iii) 0 · α = 0.
(iv) (α · β) · γ = α · (β · γ).
(v) If β ≤ γ then β · α ≤ γ · α.

(I.e., the ordinal class function F·α : On → On, δ 7→ δ · α is ‘weakly increasing’ or
‘(weak) order preserving’.)

Theorem 5.7. (Division Algorithm) For arbitrary ordinals α and β such that β 6= 0, there
exist unique ordinals ξ and η such that α = β · ξ + η and η < β.

For the definition and the properties of ordinal exponentiation, see Section 9 of [1].3

3[1] Lectures on Set Theory by J. Donald Monk.


