
Set Theory (MATH 6730)

Trees

From now on we will work in ZFC.

Definition 1. A tree is a partially ordered set (T,<) with the property that for every t ∈ T
the set {s ∈ T : s < t} is well-ordered by <. If (T,<) is a tree,

• the height of an element t ∈ T is the order type of the set {s ∈ T : s < t} (a uniquely
determined ordinal), and is denoted by ht(t, T ) or ht(t);
• the height of T , denoted by ht(T ), is the least ordinal greater than all ordinals ht(t),
t ∈ T ;
• an element of T of height 0 is called a root of T ;
• for each ordinal α, the α-th level of T , denoted by Levα(T ), is the set of all elements

of T of height α;
• a chain in T is a subset of T linearly ordered (hence well-ordered) by <;
• the length of a chain C in T is the order type of C (a uniquely determined ordinal);
• a branch of T is a maximal chain in T ;
• an antichain in T is a subset X of T such that any two distinct elements of X are

incomparable.

Notation 2. For any tree (T,<) and t ∈ T we will denote the set {u ∈ T : t ≤ u} by
Up(t, T ) or simply Up(t).

Notation 3. For any ordinal α and any set S, let <αS denote the set of all functions β → S
such that β < α. Equivalently,

<αS =
⋃
β<α

βS = {〈sγ : γ < β〉 : β < α, sγ ∈ S for all γ < β}.

Example 4.

(i) (α,<) is a tree for every ordinal; its height is α; it has a unique branch, namely α
itself, and the length of the branch is also α.

(ii) (<α2,⊂) is a tree for every ordinal α;1 its height is α, and every branch has length α.
(iii) (Q, <) is not a tree.
(iv) The level sets of a tree are antichains in the tree.

Theorem 5. (König’s Tree Lemma) Every tree of height ω in which all levels are finite has
an infinite branch.

1Throughout, ⊂ denotes proper inclusion.
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Definition 6. Let κ be an infinite cardinal. A tree is called

• a κ-tree if it has height κ and every level has size < κ;
• a κ-Aronszajn tree if it is a κ-tree and has no chain of size κ;
• a κ-Suslin tree if it has height κ and has no chains or antichains of size κ.

An Aronszajn tree is an ω1-Aronszajn tree, while a Suslin tree is an ω1-Suslin tree.

Facts 7.

(i) König’s Theorem is equivalent to saying that there is no ω-Aronszajn tree.
(ii) For any infinite cardinal κ and for any tree (T,<),

T is a κ-Suslin tree ⇒ T is a κ-Aronszajn tree ⇒ T is a κ-tree.

Theorem 8. If κ is a singular cardinal, then there exists a κ-Suslin tree.

Proof. Since κ is singular, there exists a strictly increasing sequence 〈λα : α < cf(κ)〉 of
cardinals such that

⋃
α<cf(κ) λα = κ. Consider the tree with a single root r which is the union

of ‘almost disjoint’ branches Bα of lengths λα (α < cf(κ)), that is, Bα ∩ Bβ = {r} for all
α < β < cf(κ). �

There are no results in ZFC about the existence or nonexistence of κ-Suslin trees for
uncountable regular cardinals κ. In particular, for κ = ω1 it is known that the existence of
a Suslin tree is independent of ZFC.

However, for Aronszajn trees, we have the following theorem.
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Theorem 9. There exists an Aronszajn tree.

Proof. The desired tree will be constructed as a subtree of (T,⊂) where

T = {s ∈ <ω1ω : s is one-to-one}.
We will define the system 〈Sα : α < ω1〉 of levels of the desired tree by recursion so that the
following conditions are satisfied for each β < ω1:

(1β) Sβ ⊆ βω ∩ T .
(2β) ω \ rng(s) is infinite for every s ∈ Sβ.
(3β) For all s ∈ Sγ with γ < β there exists t ∈ Sβ such that s ⊂ t.
(4β) |Sβ| ≤ ω.
(5β) If s ∈ Sβ and t ∈ βω ∩ T are such that {γ < β : s(γ) 6= t(γ)} is finite, then t ∈ Sβ.
(6β) If s ∈ Sβ and γ < β, then s�γ ∈ Sγ.

If this can be achieved, then the tree
(⋃

α<ω1
Sα,⊂

)
is an Aronszajn tree. (Why?)

Let α be an ordinal < ω1. For α = 0, let S0 = {∅}. Clearly, conditions (10)–(60) hold.
Now let α > 0, and assume that the system 〈Sβ : β < α〉 of levels has been defined so that

conditions (1β)–(6β) hold for all β < α. Our goal is to define Sα so that conditions (1α)–(6α)
hold.

First, let α (< ω1) be a successor ordinal, say α = ε + 1. Define Sα to be the set of all
t ∈ αω ∩ T that extend members of Sε; that is,

Sα =
{
s ∪ {(ε, n)} : s ∈ Sε, n ∈ ω \ rng(s)

}
.

It is straightforward to verify that conditions (1α)–(6α) are satisfied.
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(1β) Sβ ⊆ βω ∩ T .
(2β) ω \ rng(s) is infinite for every s ∈ Sβ.
(3β) For all s ∈ Sγ with γ < β there exists t ∈ Sβ such that s ⊂ t.
(4β) |Sβ| ≤ ω.

(5β) If s ∈ Sβ and t ∈ βω ∩ T are such that {γ < β : s(γ) 6= t(γ)} is finite, then t ∈ Sβ.
(6β) If s ∈ Sβ and γ < β, then s�γ ∈ Sγ .

Now let α (< ω1) be a limit ordinal. Since α is countable, we have cf(α) = ω. Hence, there
exists a strictly increasing sequence 〈δn : n ∈ ω〉 of ordinals such that

⋃
n∈ω δn = α. Choose

and fix such a sequence. Let U =
⋃
β<α Sβ. Given any s ∈ U , say dmn(s) = β, we want to

define an extension ts ∈ αω∩T of s such that ω \ rng(ts) is infinite. The steps are as follows:

• Let n ∈ ω be minimal with β ≤ δn. Use (3)δn+i
for i ∈ ω to define a sequence

〈ui : i ∈ ω〉 by recursion such that s ⊆ u0, ui ∈ Sδn+i
, and ui ⊂ ui+1 for all i ∈ ω.

• v =
⋃
i∈ω ui satisfies s ⊆ v ∈ αω ∩ T , but it may fail that ω \ rng(v) is infinite.

• Modify v at all places δn+i (i ∈ ω) to get ts.

Define Sα by

Sα =
⋃
s∈U

{
w ∈ αω ∩ T : {ε < α : w(ε) 6= ts(ε)} is finite

}
,

and check that conditions (1α)–(6α) are satisfied. �

Remark 10. The Aronszajn tree (S,⊂) =
(⋃

α<ω1
Sα,⊂

)
constructed in the proof of The-

orem 9 is not a Suslin tree, because the sets

An =
⋃
α<ω1

{s ∈ Sα+1 : s(α) = n} (n ∈ ω)

are antichains in (S,⊂), but since
⋃
n∈ω An =

⋃
α<ω1

Sα+1 and
∣∣⋃

α<ω1
Sα+1

∣∣ = ω1, we get
that at least one of the antichains An (n ∈ ω) has cardinality ω1.
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For the rest of this section we will focus on Suslin trees. Our main objectives are

(I) to establish a sufficient condition for a κ-tree (κ uncountable regular) to be a κ-Suslin
tree, which we will use later on in the course to prove the existence of a Suslin tree
under an extra assumption added to ZFC;

(II) to discuss the relationship between Suslin trees and Suslin lines, which motivates the
study of Suslin trees.

We need some preparation.

Definition 11. Let (T,<) be a tree, and let κ be an infinite cardinal.

• We say that T is eventually branching if for every t ∈ T the set Up(t) is not a chain
in T .
• A normal subtree of (T,<) is a tree (S,≺) such that

– (S,≺) is a subtree of (T,<), that is, S ⊆ T and ≺ = < ∩ (S × S); and
– for any t, t′ ∈ T , if t < t′ and t′ ∈ S, then t ∈ S.

• T is called a well-pruned κ-tree if
– T is a κ-tree with exactly one root, and
– for all α < β < ht(T ) and for every x ∈ Levα(T ) there exists y ∈ Levβ(T ) such

that x < y.

Example 12. The Aronszajn tree (S,⊂) =
(⋃

α<ω1
Sα,⊂

)
constructed in the proof of The-

orem 9 is

• a normal subtree of (T,⊂) where T = {s ∈ <ω1ω : s is one-to-one}; and is
• an eventually branching, well-pruned ω1-tree.

Facts 13. Let T be a tree, and let κ be an infinite cardinal.

(i) If S is a normal subtree of T , then ht(s, T ) = ht(s, S) for all s ∈ S.
(ii) A normal subtree of height κ of a κ-Aronszajn tree is a κ-Aronszajn tree;

a normal subtree of height κ of a κ-Suslin tree is a κ-Suslin tree.
(iii) A well-pruned κ-Aronszajn tree is eventually branching.
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Theorem 14. Let κ be a regular cardinal, and let T be an arbitrary κ-tree.

(i) T has a normal subtree T ′ which is a well-pruned κ-tree.
(ii) Moreover, if x ∈ T is such that |Up(x)| = κ, then T has a normal subtree T ′ con-

taining x which is a well-pruned κ-tree.

Idea of Proof. Argue that

• Under the assumptions of (i), T has a root r such that |Up(r)| = κ.
Under the assumptions of (ii), T has a root r ≤ x such that |Up(r)| = κ.
• The (normal!) subtree T ′ of T defined by T ′ = {t ∈ T : r ≤ t, |Up(t)| = κ} is a

well-pruned κ-tree. �

Theorem 15. Let κ be an uncountable regular cardinal. If T is an eventually branching
κ-tree such that every antichain in T has size < κ, then T is a κ-Suslin tree.

Idea of Proof. Arguing the contrapositive, we consider any eventually branching κ-tree T
such that T has a chain C of length κ, and prove that T has an antichain of size κ.

• We may assume that C is a branch, i.e. contains elements from each level of T .
• There exists a function f : C → T such that t < f(t) /∈ C for all t ∈ C.
• Now define 〈sα : α < κ〉 ∈ κC by recursion so that ht(sα) >

⋃
β<α ht

(
f(sβ)

)
for all

α < κ.
• Then {f(sα) : α < κ} is an antichain of size κ. �
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Suslin trees are closely related to Suslin lines, which occurred naturally in set theory (set
theoretical topology) in connection with a possible weakening of a classical characterization
of the real line (R, <). We need some definitions.

Definition 16. Let (L,<) be a linear order.

• We say that (L,<) is densely ordered (or briefly dense) if |L| > 1 and for any a < b
in L there exists c ∈ L such that a < c < b. A subset X of L is dense in L (in the
order sense) if for any a < b in L there exists c ∈ X such that a < c < b.
• The subsets of L of the form (a, b) = {x ∈ L : a < x < b}, (−∞, b) = {x ∈ L : x < b},

(a,∞) = {x ∈ L : a < x} with a, b ∈ L are called open intervals. A subset U of L is
called open if U = L or U is a union of open intervals.
• A subset D of L is topologically dense in L if D ∩ U 6= ∅ for every nonempty open

subset U of L.
• L is called separable if L has a countable subset which is topologically dense in L.
• An antichain2 in L is a set of pairwise disjoint open subsets of L.
• L is said to satisfy the countable chain condition (ccc) if every antichain in L is

countable.

Facts 17. Let (L,<) be a linear order.

(i) If L has a dense subset (in the order sense) and |L| > 1, then L is densely ordered.
(ii) Every dense subset of L (in the order sense) is topologically dense in L.

(iii) If L is densely ordered then, conversely, every topologically dense subset of L is dense
in L (in the order sense).

(iv) If L is separable, then L satisfies ccc.

Theorem 18. The following conditions on a linear order (L,≺) are equivalent:

(a) (L,≺) is isomorphic to (R, <).
(b) (L,≺) has the following properties:

(†) L is densely ordered and has no least or greatest elements; moreover,
in L, every nonempty subset that is bounded above has a least upper bound.

(‡) L is separable.

Suslin asked (1920) whether the separability condition (‡) in this theorem could be replaced
by the condition that L has ccc. The assumption that the answer to this question is ‘yes’ is
referred to as the “Suslin Hypothesis”.

Theorem 19. The following statements are equivalent (in ZFC):

(a) There exists a linear order (S,<) such that
• (S,<) satisfies ccc, and
• (S,<) is not separable.

(b) There exists a linear order (L,≺) that is a counterexample to the Suslin Hypothesis.
(c) There exists a linear order (L,≺) such that

• (L,≺) satisfies (†),
• (L,≺) satisfies ccc, and
• no nonempty open subset of (L,<) is separable.

2This notion is different from antichains as defined in Definition 1.
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Definition 20. We will call a linear order (S,<) a Suslin line3 if it satisfies the conditions
in statement (a) of Theorem 19.

By Theorem 19, the Suslin Hypothesis can be restated as follows: There is no Suslin line.

Theorem 21. The following statements are equivalent (in ZFC):

(a) There exists a Suslin line.
(b) There exists a Suslin tree.

Idea of Proof. (b) ⇒ (a): We use a general construction that creates a ‘line’ (a linear order)
from a tree.

• Given any tree (T,<) and any linear order ≺ on T (unrelated to <) we define a
relation l on the set B of all branches of T as follows:

– Note that since each B ∈ B is a maximal chain in T , it contains a unique element
bBα of height α for every α < len(B) where len(B) is the length of B.

– For any two distinct branches B1, B2 ∈ B, define B1 l B2 to hold iff bB1
α ≺ bB2

α

for the smallest ordinal α < min
(
len(B1), len(B2)

)
such that bB1

α 6= bB2
α . (Such

an α exists, because B1 6⊆ B2 and B2 6⊆ B1.)
• (B,l) is a linear order.
• If (T,<) is a well-pruned Suslin tree and ≺ is any linear order on T , then (B,l) is

a Suslin line.

So, if there exists a Suslin tree, then by Theorem 14(i) and Facts 13(ii), there also exists a
well-pruned Suslin tree, and the construction above yields a Suslin line.

(a)⇒ (b): Assume there exists a Suslin line. By Theorem 19, there exists a Suslin line (L,≺)
satisfying all conditions in part (c) of the theorem.4 Let I denote the set of all intervals (a, b)
with a ≺ b in L.

• One can define (by recursion) a system 〈Jα : α < ω1〉 of nonempty subsets of I with
the following properties:

– The elements of Jα a pairwise disjoint for every α < ω1.
– The sets Jα (α < ω1) are pairwise disjoint.
– For T =

⋃
α<ω1

Jα, the partially ordered set (T,⊃) is a tree with Levα(T ) = Jα
for every α < ω1.

– If γ < α < ω1 and I ∈ Jγ, then there are at least two J ∈ Jα such that I ⊃ J .
– If γ < α < ω1 and I ∈ Jγ, J ∈ Jα, then either I ⊃ J or I ∩ J = ∅.

• The last three items imply, respectively, the following:
– T has height ω1.
– T is eventually branching.
– Every antichain (in the sense of Definition 1) in T is an antichain (in the sense

of Definition 16) in the Suslin line (L,≺). Since L satisfies ccc, every antichain
in T is countable.

It follows from Theorem 15 that T is a Suslin tree.
�

3A Suslin line is often defined as a linear order that is a counterexample to the Suslin Hypothesis. This
definition is not equivalent to our definition. Only the existence of the two kinds of Suslin lines is equivalent.

4Actually, the completeness property in the second line of (†) is not used in the construction.


