Set Theory (MATH 6730)

Trees

From now on we will work in ZFC.

Definition 1. A *tree* is a partially ordered set (T, <) with the property that for every $t \in T$ the set $\{s \in T : s < t\}$ is well-ordered by <. If (T, <) is a tree,

- the *height* of an element $t \in T$ is the order type of the set $\{s \in T : s < t\}$ (a uniquely determined ordinal), and is denoted by ht(t,T) or ht(t);
- the *height* of T, denoted by ht(T), is the least ordinal greater than all ordinals ht(t), $t \in T$;
- an element of T of height 0 is called a *root* of T;
- for each ordinal α , the α -th level of T, denoted by $\text{Lev}_{\alpha}(T)$, is the set of all elements of T of height α ;
- a *chain* in T is a subset of T linearly ordered (hence well-ordered) by <;
- the *length of a chain* C in T is the order type of C (a uniquely determined ordinal);
- a *branch* of T is a maximal chain in T;
- an *antichain* in T is a subset X of T such that any two distinct elements of X are incomparable.

Notation 2. For any tree (T, <) and $t \in T$ we will denote the set $\{u \in T : t \leq u\}$ by Up(t,T) or simply Up(t).

Notation 3. For any ordinal α and any set S, let ${}^{<\alpha}S$ denote the set of all functions $\beta \to S$ such that $\beta < \alpha$. Equivalently,

$${}^{<\alpha}S = \bigcup_{\beta < \alpha} {}^{\beta}S = \{ \langle s_{\gamma} : \gamma < \beta \rangle : \beta < \alpha, \ s_{\gamma} \in S \text{ for all } \gamma < \beta \}.$$

Example 4.

- (i) $(\alpha, <)$ is a tree for every ordinal; its height is α ; it has a unique branch, namely α itself, and the length of the branch is also α .
- (ii) $({}^{<\alpha}2, \subset)$ is a tree for every ordinal α ;¹ its height is α , and every branch has length α .
- (iii) $(\mathbb{Q}, <)$ is not a tree.
- (iv) The level sets of a tree are antichains in the tree.

Theorem 5. (König's Tree Lemma) Every tree of height ω in which all levels are finite has an infinite branch.

¹Throughout, \subset denotes proper inclusion.

Definition 6. Let κ be an infinite cardinal. A tree is called

- a κ -tree if it has height κ and every level has size $< \kappa$;
- a κ -Aronszajn tree if it is a κ -tree and has no chain of size κ ;
- a κ -Suslin tree if it has height κ and has no chains or antichains of size κ .

An Aronszajn tree is an ω_1 -Aronszajn tree, while a Suslin tree is an ω_1 -Suslin tree.

Facts 7.

- (i) König's Theorem is equivalent to saying that there is no ω -Aronszajn tree.
- (ii) For any infinite cardinal κ and for any tree (T, <),

T is a κ -Suslin tree \Rightarrow T is a κ -Aronszajn tree \Rightarrow T is a κ -tree.

Theorem 8. If κ is a singular cardinal, then there exists a κ -Suslin tree.

Proof. Since κ is singular, there exists a strictly increasing sequence $\langle \lambda_{\alpha} : \alpha < cf(\kappa) \rangle$ of cardinals such that $\bigcup_{\alpha < cf(\kappa)} \lambda_{\alpha} = \kappa$. Consider the tree with a single root r which is the union of 'almost disjoint' branches B_{α} of lengths λ_{α} ($\alpha < cf(\kappa)$), that is, $B_{\alpha} \cap B_{\beta} = \{r\}$ for all $\alpha < \beta < cf(\kappa)$.

There are no results in ZFC about the existence or nonexistence of κ -Suslin trees for uncountable regular cardinals κ . In particular, for $\kappa = \omega_1$ it is known that the existence of a Suslin tree is independent of ZFC.

However, for Aronszajn trees, we have the following theorem.

Theorem 9. There exists an Aronszajn tree.

Proof. The desired tree will be constructed as a subtree of (T, \subset) where

$$T = \{ s \in {}^{<\omega_1}\omega : s \text{ is one-to-one} \}.$$

We will define the system $\langle S_{\alpha} : \alpha < \omega_1 \rangle$ of levels of the desired tree by recursion so that the following conditions are satisfied for each $\beta < \omega_1$:

(1_{β}) $S_{\beta} \subseteq {}^{\beta}\omega \cap T$. (2_{β}) $\omega \setminus \operatorname{rng}(s)$ is infinite for every $s \in S_{\beta}$. (3_{β}) For all $s \in S_{\gamma}$ with $\gamma < \beta$ there exists $t \in S_{\beta}$ such that $s \subset t$. (4_{β}) $|S_{\beta}| \leq \omega$.

- (5_{β}) If $s \in S_{\beta}$ and $t \in {}^{\beta}\omega \cap T$ are such that $\{\gamma < \beta : s(\gamma) \neq t(\gamma)\}$ is finite, then $t \in S_{\beta}$.
- (6_{β}) If $s \in S_{\beta}$ and $\gamma < \beta$, then $s \upharpoonright \gamma \in S_{\gamma}$.

If this can be achieved, then the tree $\left(\bigcup_{\alpha<\omega_1}S_\alpha,\subset\right)$ is an Aronszajn tree. (Why?)

Let α be an ordinal $\langle \omega_1$. For $\alpha = 0$, let $S_0 = \{\emptyset\}$. Clearly, conditions (1_0) - (6_0) hold.

Now let $\alpha > 0$, and assume that the system $\langle S_{\beta} : \beta < \alpha \rangle$ of levels has been defined so that conditions $(1_{\beta})-(6_{\beta})$ hold for all $\beta < \alpha$. Our goal is to define S_{α} so that conditions $(1_{\alpha})-(6_{\alpha})$ hold.

First, let $\alpha (< \omega_1)$ be a successor ordinal, say $\alpha = \varepsilon + 1$. Define S_{α} to be the set of all $t \in {}^{\alpha}\omega \cap T$ that extend members of S_{ε} ; that is,

$$S_{\alpha} = \{ s \cup \{ (\varepsilon, n) \} : s \in S_{\varepsilon}, \ n \in \omega \setminus \operatorname{rng}(s) \}.$$

It is straightforward to verify that conditions $(1_{\alpha})-(6_{\alpha})$ are satisfied.

 $(1_{\beta}) S_{\beta} \subseteq {}^{\beta}\omega \cap T.$ $(2_{\beta}) \ \omega \setminus \operatorname{rng}(s)$ is infinite for every $s \in S_{\beta}$. (3_{β}) For all $s \in S_{\gamma}$ with $\gamma < \beta$ there exists $t \in S_{\beta}$ such that $s \subset t$. $(4_{\beta}) |S_{\beta}| \le \omega.$ (5_{β}) If $s \in S_{\beta}$ and $t \in {}^{\beta}\omega \cap T$ are such that $\{\gamma < \beta : s(\gamma) \neq t(\gamma)\}$ is finite, then $t \in S_{\beta}$. (6_{β}) If $s \in S_{\beta}$ and $\gamma < \beta$, then $s \upharpoonright \gamma \in S_{\gamma}$.

Now let $\alpha (< \omega_1)$ be a limit ordinal. Since α is countable, we have $cf(\alpha) = \omega$. Hence, there exists a strictly increasing sequence $\langle \delta_n : n \in \omega \rangle$ of ordinals such that $\bigcup_{n \in \omega} \delta_n = \alpha$. Choose and fix such a sequence. Let $U = \bigcup_{\beta < \alpha} S_{\beta}$. Given any $s \in U$, say $dmn(s) = \beta$, we want to define an extension $t_s \in {}^{\alpha}\omega \cap T$ of s such that $\omega \setminus \operatorname{rng}(t_s)$ is infinite. The steps are as follows:

- Let $n \in \omega$ be minimal with $\beta \leq \delta_n$. Use $(3)_{\delta_{n+i}}$ for $i \in \omega$ to define a sequence $\langle u_i : i \in \omega \rangle$ by recursion such that $s \subseteq u_0, u_i \in S_{\delta_{n+i}}$, and $u_i \subset u_{i+1}$ for all $i \in \omega$. • $v = \bigcup_{i \in \omega} u_i$ satisfies $s \subseteq v \in {}^{\alpha}\omega \cap T$, but it may fail that $\omega \setminus \operatorname{rng}(v)$ is infinite.
- Modify v at all places δ_{n+i} $(i \in \omega)$ to get t_s .

Define S_{α} by

$$S_{\alpha} = \bigcup_{s \in U} \big\{ w \in {}^{\alpha} \omega \cap T : \{ \varepsilon < \alpha : w(\varepsilon) \neq t_s(\varepsilon) \} \text{ is finite} \big\},$$

and check that conditions (1_{α}) - (6_{α}) are satisfied.

Remark 10. The Aronszajn tree $(S, \subset) = (\bigcup_{\alpha < \omega_1} S_\alpha, \subset)$ constructed in the proof of Theorem 9 is not a Suslin tree, because the sets

$$A_n = \bigcup_{\alpha < \omega_1} \{ s \in S_{\alpha+1} : s(\alpha) = n \} \quad (n \in \omega)$$

are antichains in (S, \subset) , but since $\bigcup_{n \in \omega} A_n = \bigcup_{\alpha < \omega_1} S_{\alpha+1}$ and $\left| \bigcup_{\alpha < \omega_1} S_{\alpha+1} \right| = \omega_1$, we get that at least one of the antichains A_n $(n \in \omega)$ has cardinality ω_1 .

For the rest of this section we will focus on Suslin trees. Our main objectives are

- (I) to establish a sufficient condition for a κ -tree (κ uncountable regular) to be a κ -Suslin tree, which we will use later on in the course to prove the existence of a Suslin tree under an extra assumption added to ZFC;
- (II) to discuss the relationship between Suslin trees and Suslin lines, which motivates the study of Suslin trees.

We need some preparation.

Definition 11. Let (T, <) be a tree, and let κ be an infinite cardinal.

- We say that T is eventually branching if for every $t \in T$ the set Up(t) is not a chain in T.
- A normal subtree of (T, <) is a tree (S, \prec) such that
 - $-(S, \prec)$ is a subtree of (T, <), that is, $S \subseteq T$ and $\prec = < \cap (S \times S)$; and - for any $t, t' \in T$, if t < t' and $t' \in S$, then $t \in S$.
- T is called a *well-pruned* κ -tree if
 - -T is a κ -tree with exactly one root, and
 - for all $\alpha < \beta < \operatorname{ht}(T)$ and for every $x \in \operatorname{Lev}_{\alpha}(T)$ there exists $y \in \operatorname{Lev}_{\beta}(T)$ such that x < y.

Example 12. The Aronszajn tree $(S, \subset) = (\bigcup_{\alpha < \omega_1} S_\alpha, \subset)$ constructed in the proof of Theorem 9 is

- a normal subtree of (T, \subset) where $T = \{s \in {}^{<\omega_1}\omega : s \text{ is one-to-one}\}$; and is
- an eventually branching, well-pruned ω_1 -tree.

Facts 13. Let T be a tree, and let κ be an infinite cardinal.

- (i) If S is a normal subtree of T, then ht(s,T) = ht(s,S) for all $s \in S$.
- (ii) A normal subtree of height κ of a κ-Aronszajn tree is a κ-Aronszajn tree;
 a normal subtree of height κ of a κ-Suslin tree is a κ-Suslin tree.
- (iii) A well-pruned κ -Aronszajn tree is eventually branching.

Theorem 14. Let κ be a regular cardinal, and let T be an arbitrary κ -tree.

- (i) T has a normal subtree T' which is a well-pruned κ -tree.
- (ii) Moreover, if $x \in T$ is such that $|Up(x)| = \kappa$, then T has a normal subtree T' containing x which is a well-pruned κ -tree.

Idea of Proof. Argue that

- Under the assumptions of (i), T has a root r such that $|\text{Up}(r)| = \kappa$. Under the assumptions of (ii), T has a root $r \leq x$ such that $|\text{Up}(r)| = \kappa$.
- The (normal!) subtree T' of T defined by $T' = \{t \in T : r \leq t, |Up(t)| = \kappa\}$ is a well-pruned κ -tree.

Theorem 15. Let κ be an uncountable regular cardinal. If T is an eventually branching κ -tree such that every antichain in T has size $< \kappa$, then T is a κ -Suslin tree.

Idea of Proof. Arguing the contrapositive, we consider any eventually branching κ -tree T such that T has a chain C of length κ , and prove that T has an antichain of size κ .

- We may assume that C is a branch, i.e. contains elements from each level of T.
- There exists a function $f: C \to T$ such that $t < f(t) \notin C$ for all $t \in C$.
- Now define $\langle s_{\alpha} : \alpha < \kappa \rangle \in {}^{\kappa}C$ by recursion so that $\operatorname{ht}(s_{\alpha}) > \bigcup_{\beta < \alpha} \operatorname{ht}(f(s_{\beta}))$ for all $\alpha < \kappa$.

• Then $\{f(s_{\alpha}) : \alpha < \kappa\}$ is an antichain of size κ .

Suslin trees are closely related to Suslin lines, which occurred naturally in set theory (set theoretical topology) in connection with a possible weakening of a classical characterization of the real line $(\mathbb{R}, <)$. We need some definitions.

Definition 16. Let (L, <) be a linear order.

- We say that (L, <) is densely ordered (or briefly dense) if |L| > 1 and for any a < b in L there exists $c \in L$ such that a < c < b. A subset X of L is dense in L (in the order sense) if for any a < b in L there exists $c \in X$ such that a < c < b.
- The subsets of L of the form $(a, b) = \{x \in L : a < x < b\}, (-\infty, b) = \{x \in L : x < b\}, (a, \infty) = \{x \in L : a < x\}$ with $a, b \in L$ are called *open intervals*. A subset U of L is called *open* if U = L or U is a union of open intervals.
- A subset D of L is topologically dense in L if $D \cap U \neq \emptyset$ for every nonempty open subset U of L.
- L is called *separable* if L has a countable subset which is topologically dense in L.
- An *antichain*² in L is a set of pairwise disjoint open subsets of L.
- L is said to satisfy the *countable chain condition* (*ccc*) if every antichain in L is countable.

Facts 17. Let (L, <) be a linear order.

- (i) If L has a dense subset (in the order sense) and |L| > 1, then L is densely ordered.
- (ii) Every dense subset of L (in the order sense) is topologically dense in L.
- (iii) If L is densely ordered then, conversely, every topologically dense subset of L is dense in L (in the order sense).
- (iv) If L is separable, then L satisfies ccc.

Theorem 18. The following conditions on a linear order (L, \prec) are equivalent:

- (a) (L, \prec) is isomorphic to $(\mathbb{R}, <)$.
- (b) (L, \prec) has the following properties:
 - (\dagger) L is densely ordered and has no least or greatest elements; moreover,
 - in L, every nonempty subset that is bounded above has a least upper bound.
 - (\ddagger) L is separable.

Suslin asked (1920) whether the separability condition (\ddagger) in this theorem could be replaced by the condition that L has ccc. The assumption that the answer to this question is 'yes' is referred to as the "Suslin Hypothesis".

Theorem 19. The following statements are equivalent (in ZFC):

- (a) There exists a linear order (S, <) such that
 - (S, <) satisfies ccc, and
 - (S, <) is not separable.
- (b) There exists a linear order (L, \prec) that is a counterexample to the Suslin Hypothesis.
- (c) There exists a linear order (L, \prec) such that
 - (L, \prec) satisfies (\dagger) ,
 - (L, \prec) satisfies ccc, and
 - no nonempty open subset of (L, <) is separable.

 $^{^{2}}$ This notion is different from antichains as defined in Definition 1.

Definition 20. We will call a linear order (S, <) a Suslin line³ if it satisfies the conditions in statement (a) of Theorem 19.

By Theorem 19, the Suslin Hypothesis can be restated as follows: There is no Suslin line.

Theorem 21. The following statements are equivalent (in ZFC):

- (a) There exists a Suslin line.
- (b) There exists a Suslin tree.

Idea of Proof. (b) \Rightarrow (a): We use a general construction that creates a 'line' (a linear order) from a tree.

- Given any tree (T, <) and any linear order \prec on T (unrelated to <) we define a relation \lt on the set \mathcal{B} of all branches of T as follows:
 - Note that since each $B \in \mathcal{B}$ is a maximal chain in T, it contains a unique element b^B_{α} of height α for every $\alpha < \operatorname{len}(B)$ where $\operatorname{len}(B)$ is the length of B.
 - For any two distinct branches $B_1, B_2 \in \mathcal{B}$, define $B_1 < B_2$ to hold iff $b_{\alpha}^{B_1} \prec b_{\alpha}^{B_2}$ for the smallest ordinal $\alpha < \min(\operatorname{len}(B_1), \operatorname{len}(B_2))$ such that $b_{\alpha}^{B_1} \neq b_{\alpha}^{B_2}$. (Such an α exists, because $B_1 \not\subseteq B_2$ and $B_2 \not\subseteq B_1$.)
- (\mathcal{B}, \lessdot) is a linear order.
- If (T, <) is a well-pruned Suslin tree and \prec is any linear order on T, then (\mathcal{B}, \lessdot) is a Suslin line.

So, if there exists a Suslin tree, then by Theorem 14(i) and Facts 13(ii), there also exists a well-pruned Suslin tree, and the construction above yields a Suslin line.

(a) \Rightarrow (b): Assume there exists a Suslin line. By Theorem 19, there exists a Suslin line (L, \prec) satisfying all conditions in part (c) of the theorem.⁴ Let I denote the set of all intervals (a, b) with $a \prec b$ in L.

- One can define (by recursion) a system $\langle \mathbb{J}_{\alpha} : \alpha < \omega_1 \rangle$ of nonempty subsets of \mathbb{I} with the following properties:
 - The elements of \mathbb{J}_{α} a pairwise disjoint for every $\alpha < \omega_1$.
 - The sets \mathbb{J}_{α} ($\alpha < \omega_1$) are pairwise disjoint.
 - For $T = \bigcup_{\alpha < \omega_1} \mathbb{J}_{\alpha}$, the partially ordered set (T, \supset) is a tree with $\text{Lev}_{\alpha}(T) = \mathbb{J}_{\alpha}$ for every $\alpha < \omega_1$.
 - If $\gamma < \alpha < \omega_1$ and $I \in \mathbb{J}_{\gamma}$, then there are at least two $J \in \mathbb{J}_{\alpha}$ such that $I \supset J$.
 - If $\gamma < \alpha < \omega_1$ and $I \in \mathbb{J}_{\gamma}, J \in \mathbb{J}_{\alpha}$, then either $I \supset J$ or $I \cap J = \emptyset$.
- The last three items imply, respectively, the following:
 - -T has height ω_1 .
 - -T is eventually branching.
 - Every antichain (in the sense of Definition 1) in T is an antichain (in the sense of Definition 16) in the Suslin line (L, \prec) . Since L satisfies ccc, every antichain in T is countable.

It follows from Theorem 15 that T is a Suslin tree.

 $^{^{3}}$ A Suslin line is often defined as a linear order that is a counterexample to the Suslin Hypothesis. This definition is not equivalent to our definition. Only the existence of the two kinds of Suslin lines is equivalent.

⁴Actually, the completeness property in the second line of (†) is not used in the construction.