Prob. 1 A 3D stress state is given: $\sigma_{xx} = \sigma_x = 30\text{ MPa},\ \sigma_{yy} = \sigma_y = -18\text{ MPa},\ \sigma_{zz} = \sigma_z = -36\text{ MPa},\ \sigma_{xy} = \tau_{xy} = 36\text{ MPa},\ \sigma_{yz} = \tau_{yz} = 24\text{ MPa},$ and $\sigma_{zx} = \tau_{zx} = 12\text{ MPa}$ (All in MPa). Consider a special plane whose unit normal satisfies the relation $l_0 = m_0 = n_0 = 1/\sqrt{3}$, determine

a) the three angles of the normal direction of the plane, α, β, and γ.

b) the stress vector on the plane.

c) the magnitude of the stress vector (the length of the stress vector on the plane).

Prob. 2 For the same 3D stress state as in Prob. 1: $\sigma_{xx} = \sigma_x = 30\text{ MPa},\ \sigma_{yy} = \sigma_y = -18\text{ MPa},\ \sigma_{zz} = \sigma_z = -36\text{ MPa},\ \sigma_{xy} = \tau_{xy} = 36\text{ MPa},\ \sigma_{yz} = \tau_{yz} = 24\text{ MPa},$ and $\sigma_{zx} = \tau_{zx} = 12\text{ MPa}$ (All in MPa).

a) Plot the characteristic equation.

b) Determine the three principal stresses.

c) Determine the directions of the three principal stresses.